

D550

Digitální regulátor napětí

Instalace a údržba

LEROY-SOMER

Tento návod se vztahuje na regulátor alternátoru, který jste si právě pořídili. Chtěli bychom vás upozornit na význam obsahu tohoto návodu k údržbě.

BEZPEČNOSTNÍ OPATŘENÍ

Než zařízení spustíte, musíte si důkladně přečíst tento návod na instalaci a údržbu.

Veškeré postupy a zásahy, které je nutno provést pro řádné používání tohoto stroje, musí provádět kvalifikovaný personál.

Naše oddělení technické pomoci vám je k dispozici v případě jakýchkoli informací, které potřebujete.

Jednotlivé zásahy uvedené v tomto návodu jsou doprovázeny doporučeními nebo symboly, které uživatele informují o případných nebezpečích. Je nezbytné porozumět jednotlivým bezpečnostním pokynům a dodržovat je.

POZOR

Bezpečnostní výstraha pro zásah, který by mohl vést k poškození, nebo zničení stroje a jeho okolního vybavení.

Bezpečnostní výstraha na obecné nebezpečí, které hrozí personálu (rotující mechanické části stroje).

Bezpečnostní výstraha na nebezpečí, kde hrozí personálu úraz elektrickým proudem.

Veškeré servisní činnosti nebo opravy prováděné na AVR musí vykonávat pracovník školený na uvádění do provozu a údržbu elektrických a mechanických zařízení.

VAROVÁNÍ

Toto AVR lze začlenit do stroje s označením CE. Tento návod je nutno předat koncovému uživateli.

© 2024 Moteurs Leroy-Somer SAS

Share Capital: 32,239,235 €, RCS Angoulême 338 567 258. Vyhrazujeme si právo kdykoli upravit parametry tohoto výrobku tak, abychom na něm mohli provést nejnovější technické úpravy. Informace uvedené v tomto dokumentu se mohou změnit bez předchozího upozornění.

Je zakázáno jej jakkoli reprodukovat bez našeho předchozího souhlasu.

Obsahuje ochranné známky, průmyslové vzory a patenty.

Obsah

0. PC	DJMY A VÝRAZY	6
1. Ob	pecné pokyny	7
1.1	1. Identifikační list	7
1.2	2. Obecný popis produktu	7
1.3	3. Technické charakteristiky	8
	1.3.1. Komponenta	8
	1.3.2. Provozní hodnoty	9
1.4	4. Bezpečnostní zařízení a obecné varovné symboly	12
1.5	b. Obecné informace	
1.6	5. POUZITI	
1.7	7. Preprava a skladovani	
1.0	 D. Floktrická přincioní 	13
1.5	10. Provoz	14 1 <i>1</i>
1.1	11. Servis a údržha	14 14
1.1	12 Ochrana komponenty	14 14
0 D		
2. Po	okyny k montazi a pripojeni	15
2.1	1. Rozvržení prostoru pro regulátor	15
2.2	2. Varovné symboly pro instalaci	15
2.3	3. Zapojení	16
2.4	4. Upozornění k zapojení	25
3. Po	ppis provozních režimů	26
3.1	1. Režimy regulace	26
3.2	2. Ovládání režimů a informace	29
3.3	3. Ochranné funkce	29
3.4	4. Související funkce	29
4. Ko	omunikace	29
4.1	1. USB	29
4.2	2. CAN	30
4.3	3. LED	30
5. Po	okyny k nastavení	
5.1	1. Počítačový software	
Ę	5.1.1. Instalace softwaru	
Ę	5.1.2. Různé úrovně přístupu v rámci softwaru Easyreg Advanced	
Ę	5.1.3. Popis panelu a karet	34
Ę	5.1.4. Komunikace s regulátorem D550	36
Ę	5.1.5. Popis okna "Configuration" (Konfigurace)	36
Ę	5.1.6. Okno "Oscilloscope" (Osciloskop)	42
	5.1.6.1. Křivky	42
	5.1.6.2. Spouštěč	
	5.1.0.3. KURZORY	
	5.1.6.5. Otevření konfigurace zobrazení křivky pebo osciloskopu	40 17
	5.1.6.6. Uložení konfigurace zobrazení křivky nebo osciloskopu	

5.1.6.7. Změna pozadí oblasti vykreslení a síly křivek	47
5.1.7. Okno "Monitor"	48
5.1.7.1. Jednotky zobrazeni	
5.1.7.2. Grat	
5.1.7.3. Ukazatele	
5.1.7.4. Křívka způsobilosti	
5.1.7.5. Vstupy/výstupy	
5.1.7.6. Teploty	
5.1.7.7. Synchronizace	
5.1.7.8. Stav a chyby regulatoru	51
5.1.7.9. Fresheiuv diagram	
5.1.7.10. Fazovy posun C1	
5.1.7.1 I. Zmena veikosu objeku	
5.1.7.12. Odstralni objekt	
5.1.7.13. Olozeni konligulace monitoru	
5.1.7.14. Oleviení konfigurace monitoru	
5.2.1 Dopis, rychló" konfigurace alternátoru	
5.2.2. Popis "lychie Konfigurace alternátoru	
5.2.2. Popis "pokrocile" komigurace alternatoru	
5.2.3. Zapojeni regulatoru	5/
	60
5.2.5. Definice limitu prebuzeni	61
5.2.6. Definice limitu proudu statoru	61
5.2.7. Definice ochranných funkcí	63
5.2.8. Režim regulace	68
5.2.8.1. Start	
5.2.8.2. Regulace napětí	71
5.2.8.3. Obvod pro přizpůsobení napětí	
5.2.8.4. Regulace účiníku generátoru	
5.2.8.5. Regulace kVAr generatoru	
5.2.8.6. Regulace uciniku v jednom bode site	80
5.2.8.7. Regulace budicino proudu (ruchi rezim)	
	84
5.2.10. Sprava vstupu/vystupu	85
5.2.11. Funkce krivky	86
5.2.11.1. Přehled	
5.2.11.2. Priklady funkci krivky	
5.2.12. Zesileni PID uzivatelem	8/
5.2.13. Logicke/analogove cleny	
5.2.13.1. Přehled	
5.2.13.2. Priklad programovani clenu	
5.2.14. Protokol udalosti	
5.2.15. Druna kontigurace	93
5.2.16. Synchronizace	94
5.2.17. Distribuční síť	96
5.2.17.1. Podpora napětí	96
5.2.17.2. Monitorování protilu distribuční sítě	97
5.2.17.3. Monitorování proudu statoru	
5.2.17.4. Monitorování posunu pólu	
5.3. Okno srovnání	99
5.4. Lisk zpráv	100
5.5. Export do tabulky Excel	100

6. Pokyny k údržbě	
6.1. Varovné symboly pro údržbu 6.2. Pokyny k preventivní údržbě	
6.3. Anomálie a mimořádné události	
6.4. Výměna vadného regulátoru	
7. Pokyny k recyklaci	
8. PŘÍLOHA	
8.1. Permutace vektoru	
8.2. Priority režimu regulace regulátoru	

0. POJMY A VÝRAZY

- VT Napěťový transformátor; v této příručce se napěťový transformátor používá jak pro napájení, tak pro měření napětí.
- CT Proudový transformátor používaný pro měření proudu.
- PMG Generátor s permanentním magnetem.
- AREP Pomocné vinutí instalované v zařízení, které slouží k napájení regulátoru. Obvykle je tvořeno dvěma vinutími: první "H1", který je ovlivňováno kolísáním napětí, druhé "H3", které je ovlivňováno kolísáním proudu.

1. Obecné pokyny

1.1. Identifikační list

Regulátor D550 byl navržen:

MOTEURS LEROY-SOMER Boulevard Marcellin Leroy, CS 10015 16915 ANGOULEME Cedex 9 Francie Tel.: +33 2 38 60 42 00

Referenční číslo LEROY-SOMER: 40041384

1.2. <u>Obecný popis produktu</u>

Tato příručka popisuje instalaci, použití, nastavení a údržbu regulátoru D550.

Tento regulátor slouží k regulaci alternátorů s budicím proudem menším nebo rovnajícím se 7 A v běžném provozu a maximem 15 A v případě zkratu po dobu maximálně 10 sekund.¹

Je určen k instalaci ve svorkovnicové krabici generátoru nebo řídicí skříni. Musí být instalován v souladu s místními normami pro ochranu a bezpečnost, zejména těmi, které se týkají elektroinstalací s maximálním napětím 300 V stř. mezi fází a nulovým vodičem.

Má podobu kompaktní jednotky se sadou konektorů a USB portem na přední straně.

¹ Tyto hodnoty jsou uvedeny pro teplotu 70 °C. Úplný rozsah hodnot naleznete v podrobné technické specifikaci.

Regulátor D550 je tvořen několika funkčními bloky:

- Přemostění napájení (které dodává budicí proud)
- Obvod pro měření různých druhů signálů, například napětí a proudu
- Sada digitálních a analogových vstupů/výstupů: pro řízení režimů regulace, provozních informací a korekčních referencí
- Sada konektorů
- Sada komunikačních režimů pro komunikaci a vzdálené nastavení parametrů

V regulátoru D550 je integrováno několik dalších prvků:

- 5 měřicích vstupů pro snímače teploty Pt100 nebo CTP
- 1 vstup pro inkrementální kodér pro úhlovou polohu rotoru s volbou Easy Log PS
- 1 konektor sběrnice CAN
- 1 konektor USB

1.3. Technické charakteristiky

1.3.1. Komponenta

D550 je digitální regulátor napětí, který slouží k regulaci budicího proudu alternátoru za použití oddělených regulačních smyček. Režim regulace je řízen nastavením parametrů, prostřednictvím digitálních vstupů regulátoru D550 nebo pomocí komunikačního režimu.

Tyto režimy regulace jsou:

- <u>Regulace napětí</u>
 - S nebo bez kvadraturního úbytku pro umožnění paralelního provozu zařízení (1F)
 - S nebo bez kompenzace příčného proudu
 - S nebo bez kompenzace zatížení²
- <u>Přizpůsobení napětí zařízení a napětí rozvodné sítě</u> před připojením k rozvodné sít (nazvané "3F" nebo "U=U")
- <u>Regulace účiníku</u> pouze tehdy, když je alternátor připojen k rozvodné síti (2F)
- Regulace jalového výkonu (kVAr) pouze tehdy, když je alternátor připojen k síti
- <u>Regulace cos fí v odběrném místě instalace</u> v rámci kapacity systému pohonu, z analogového vstupu (režim vzdáleného měření převodníkem dodávaným zákazníkem) nebo přímým výpočtem účiníku v odběrném místě.³
- <u>Regulace budicího proudu</u> nebo ruční režim, který umožňuje přímou kontrolu hodnotybudicího proudu

² Kvadraturní úbytek, příčný proud a kompenzace zatížení nemohou být aktivovány současně a vyžadují použití proudového transformátoru. Příčný proud vyžaduje použití dalšího CT.

³ Povinnost umístit VT pro měření napětí a CT pro měření proudu sítě (na základě Kodexu sítě) v odběrném místě a připojené na regulátor D550.

Regulátor D550 lze také použít pro:

- Upravení reference v probíhajícím režimu regulace pomocí:
 - beznapěťových kontaktů nahoru/dolů
 - analogového vstupu (4–20 mA, 0–10 V, ±10 V, potenciometr 1 kΩ)
- Monitorování 5 snímačů teploty (Pt100 nebo CTP)
- Omezení maximálního budicího proudu přiváděného do pole budiče
- Omezení maximálního proudu statoru
- Detekci ztráty fáze
- Ochranu před náhlým zkratem maximálně po dobu 10 sekund v režimech AREP, PMG
- Ochranu alternátoru pro případ poruchy rotační diody
- Monitorování (vypnutí) a podporu elektrické sítě (Kodex sítě)
- Monitorování a zaznamenávání událostí (chyby, limity atd.)
- Záznam signálů (funkce osciloskopu při použití softwarové utility)
- Definování obrazovky uživatelského rozhraní s indikátory a stavy měření (funkce sledování)

Různé datové prvky chyb, režimů regulace nebo měření mohou být dodány do 8 digitálních konfigurovatelných výstupů a/nebo 4 analogových konfigurovatelných výstupů (4–20 mA, 0–10 V, ±10 V).

1.3.2. Provozní hodnoty

•	 Měření napětí alternátoru: 2 fáze nebo 3 fáze Odběr 	530 V stř. rms max. <2 VA
•	 Měření napětí distribuční sítě: 2 fáze Odběr 	530 V stř. rms max. <2 VA
•	 Měření proudu statoru pomocí CT: 1 nebo 3 fáze Rozsah Odběr 	0–1 A nebo 0–5 A (300 % max. 30 s) <2 VA
•	 Napájení střídavým proudem: 4 svorky pro PMG, AREP, SHUNT 2 nezávislé okruhy Rozsah Max. odběr 	50–277 V stř. (115 % max. 2 minuty) <3000 VA
•	 Buzení pole: Jmenovitá hodnota Zkrat Odpor budícího vinutí 	7 A při 70 °C max. – 8 A při 55 °C 15 A max. po dobu 10 sekund >4 ohmy
•	 Pomocné stejnosměrné napájení: Rozsah Odběr 	8–35 V ss. (jmenovitý výkon: 12 V nebo 24 V) <1 A
•	Měření frekvence: • Rozsah	30–400 Hz

• Přesnost regulace

- +/-0.25% průměru tří fází s harmonickým zkreslením menším než 20%
- +/-0.5% průměru tří fází s harmonickým zkreslením od 20% do 40% (harmonické spojené s typem zatížení šesti tyristory)
- Rozsah nastavení napětí: 0 až 150 % jmenovité hodnoty napětí (lze ovládat prostřednictvím interních nastavených hodnot, beznapěťových kontaktů, analogového vstupu nebo sběrnice CAN)
- Rozsah nastavení kvadraturního úbytku -20 % až 20 %
- Ochrana před příliš nízkou frekvencí: prahová hodnota nastavitelná v krocích 0,1 Hz s nastavitelným sklonem k x V/Hz, kde 0,5<k<5
- **Pomoc s opětovným připojením zátěže pro hlavní pohonnou jednotku:** LAM, postupné zvyšování atd.
- Strop buzení: omezení prostřednictvím termálního modelu nastavitelného konfigurací ve 3 bodech
- **Prostředí:** instalováno ve skříni nebo svorkovnicové krabici
 - Provozní podmínky: okolní teplota od -40 °C do +70 °C, relativní vlhkost nižší než 95 %, nekondenzující
 - Podmínky skladování: okolní teplota od -55 °C do +85 °C, relativní vlhkost nižší než 95 %, nekondenzující
 - Vibrace: 2,0 Hz až 25 Hz amplituda ±1,6 mm; 25 Hz až 100 Hz zrychlení ±4,0 g
- **Hmotnost:** 850 g
- **Parametry regulátoru:** nastavení pomocí softwaru EasyReg Advanced (k dispozici ke stažení) nebo prostřednictvím komunikačního rozhraní sběrnice CAN

• Soulad s normami:

- EMC: IEC 61000-6-2, IEC 61000-6-4
- Bezpečnost: IEC 61010-1 (kat. III, pol. 2)
- Prostředí: IEC 60068-1
 - Suché teplo: IEC 60068-2-2
 - Vlhké teplo: IEC 60028-2-30 a IEC 60068-2-78
 - Chlad: IEC 60068-2-1
 - Teplotní cykly: IEC 60068-2-14
 - Vibrace, rázy IEC 60068-2-6 a IEC 60068-2-27

• Homologace:

• UL (Spojené státy, Kanada), ES

• Rozměry:

Při instalaci do skříňky musí být regulátor umístěn tak, aby byla umožněna volná cirkulace vzduchu v chladiči a kolem produktu. Proto se doporučuje, aby byl regulátor nainstalován vodorovně v základně skříně tak, aby chladič byl umístěn svisle.

1.4. Bezpečnostní zařízení a obecné varovné symboly

Z důvodu bezpečnosti uživatele musí být regulátor D550 připojen ke schválenému uzemnění pomocí zemnicí svorky znázorněné níže. Nástroje pro toto zapojení nejsou součástí regulátoru D550. Použita je zásuvná svorka se šroubem M4. Na šroub se aplikuje utahovací moment 1,2 Nm +/-0,2 Nm.

Poznámka: Veškeré svorky s napětím 0 V na elektronické ovládací desce jsou připojeny k této zemnicí svorce.

Je bezpodmínečně nutné řídit se schématy elektrického připojení doporučenými v této příručce.

Regulátor D550 obsahuje zařízení, která mohou v případě problémů generátor odpojit nebo přebudit. Samotný generátor se může také zablokovat z mechanických důvodů. A zastavení činnosti jednotky může být způsobeno také kolísáním napětí nebo výpadky proudu.

Regulátor D550 je navržen pro integraci v rámci instalace nebo elektrického zařízení a nelze jej za žádných okolností považovat za bezpečnostní zařízení. Je proto odpovědností výrobce zařízení, projektanta elektroinstalace nebo uživatele, aby přijal veškerá nezbytná bezpečnostní opatření a zajistil, že systém splňuje současné normy, a aby poskytl veškerá zařízení potřebná k zajištění bezpečnosti vybavení a personálu (zejména přímý kontakt s konektory, když je regulátor v provozu).

Společnost LEROY-SOMER se zříká veškeré odpovědnosti pro případ, kdy nejsou dodržena výše uvedená doporučení.

Různé zásahy popsané v této příručce jsou doplněny o doporučení nebo symboly upozorňující uživatele na možná rizika nehod. Je nezbytné, abyste těmto níže uvedeným symbolům porozuměli a řídili se jejich doporučeními.

 Tento symbol vás v rámci celé příručky varuje před následky, které mohou vyplynout z nevhodného použití regulátoru, protože rizika spojená s elektrickým proudem mohou vést k hmotným nebo fyzickým škodám a také představovat nebezpečí požáru.

• Tento symbol vás varuje před rizikem spojeným s elektrickým proudem vůči personálu:

1.5. Obecné informace

Na regulátoru D550 mohou být během provozu nechráněné části pod napětím i horké povrchy. Neoprávněné odstranění ochranných zařízení, nesprávné použití, chybná instalace nebo nesprávný provoz mohou představovat vážné riziko pro personál a zařízení.

Další informace získáte od technické podpory.

Veškeré práce související s přepravou, instalací, uvedením do provozu a údržbou musí být prováděny zkušeným a kvalifikovaným personálem (viz IEC 364, CENELEC HD 384 nebo DIN VDE 0100 a národní specifikace pro instalaci a prevenci nehod).

V těchto základních bezpečnostních pokynech se kvalifikovanými pracovníky rozumějí osoby způsobilé k instalaci, montáži, uvedení do provozu a provozu výrobku mající příslušnou kvalifikaci.

1.6. <u>Použití</u>

Regulátory napětí D550 jsou komponenty určené pro začlenění v rámci instalace nebo elektrických zařízení.

Pokud je regulátor začleněn do zařízení, nesmí být uveden do provozu, dokud není ověřeno, že zařízení splňuje požadavky směrnice 2006/42/ES (směrnice o strojních zařízeních). Je rovněž nutné dodržovat normu EN 60204, která zejména stanoví, že elektrické ovladače (které zahrnují regulátory napětí) nelze považovat za zařízení pro přerušení obvodu a rozhodně ne za odpojovače.

Uvedení do provozu lze provést pouze tehdy, jsou-li splněny požadavky směrnice o elektromagnetické kompatibilitě (EMC 2014/30/EU).

Regulátory napětí splňují požadavky směrnice o zařízeních nízkého napětí 2014/35/EU. Uplatňují se také harmonizované normy řady DIN VDE 0160 ve spojení s normou VDE 0660 část 500 a EN 60146/VDE 0558.

Technické charakteristiky a pokyny týkající se podmínek připojení uvedené na výrobním štítku a v dodané dokumentaci musí být bezpodmínečně dodrženy.

1.7. <u>Přeprava a skladování</u>

Je třeba dodržovat veškeré pokyny týkající se přepravy, skladování a správné manipulace. Je třeba dodržovat klimatické podmínky určené v této příručce.

1.8. <u>Instalace</u>

Instalace a chlazení zařízení musí odpovídat specifikacím uvedeným v dokumentaci dodané s výrobkem.

Regulátor D550 musí být chráněn proti nadměrnému zatížení. Zejména nesmí během přepravy a manipulace dojít k poškození dílů a/nebo k úpravě rozestupů mezi jednotlivými součástmi. Nedotýkejte se elektronických součástí ani částí pod napětím.

Regulátor D550 obsahuje součásti, které jsou citlivé vůči elektrostatickým výbojům a při nesprávném zacházení se mohou snadno poškodit. Elektrické součásti nesmí být vystaveny mechanickému poškození nebo zničení (riziko pro zdraví!). Máte-li jakékoli pochybnosti týkající se výrobku, obraťte se na technickou podporu.

1.9. <u>Elektrické připojení</u>

Při provádění prací na regulátorech D550 musí být dodrženy národní požadavky pro prevenci nehod.

Elektroinstalace musí odpovídat příslušným specifikacím (např. průřezy vodičů, ochrana prostřednictvím jističe s pojistkami nebo připojení ochranného vodiče). Podrobnější informace jsou uvedeny v této příručce.

V této příručce jsou rovněž uvedeny pokyny pro instalaci, které splňují požadavky na elektromagnetickou kompatibilitu, jako je stínění, uzemnění, přítomnost filtrů a správné vložení kabelů a vodičů. Tyto pokyny je třeba dodržovat ve všech případech, i když regulátor nese označení CE. Za dodržování limitů stanovených legislativou EMC odpovídá výrobce instalace nebo zařízení.

Při použití v rámci EU: Přístrojové transformátory musí zajišťovat základní izolaci v souladu s požadavky normy IEC 61869-1, "Přístrojové transformátory – část 1: Obecné požadavky" a IEC 61869-2, "Dodatečné požadavky na transformátory proudu"

Při použití v rámci Spojených států: Přístrojové transformátory musí zajišťovat základní izolaci v souladu s požadavky normy IEEE C57.13, "Požadavky na přístrojové transformátory" a IEEE C57.13.2, "Postup zkoušky shody přístrojových transformátoru".

1.10. <u>Provoz</u>

Instalace obsahující regulátory D550 musí být vybavena dalšími ochrannými a monitorovacími zařízeními, jak je stanoveno v příslušných aktuálních bezpečnostních předpisech: zákon o technických zařízeních, předpisy pro prevenci nehod atd. Úpravy parametrů regulátoru D550 s použitím ovládacího softwaru jsou povoleny.

Ihned po vypnutí regulátoru D550 se nedotýkejte aktivních částí zařízení a elektrických přípojek pod napětím, protože kondenzátory mohou být stále napájeny. Z tohoto důvodu je třeba dodržovat varování na regulátorech napětí.

Během provozu musí zůstat všechna dvířka a ochranné kryty uzavřeny.

1.11. <u>Servis a údržba</u>

Viz dokumentace výrobce.

Naše služba technické podpory vám s potěšením poskytne veškeré další informace, které byste mohli potřebovat.

Tato příručka je určena koncovému uživateli.

1.12. Ochrana komponenty

Pro provoz regulátoru je nezbytný pomocný zdroj, který napájí vnitřní zdroje napájení produktu. Musí být chráněn 1A rychlou pojistkou (Mersen 250FA 1A – E76491 nebo ekvivalentní).

Obdobně musí být napájecí zdroje střídavého proudu pro regulátor, které generují budicí proud, chráněny rychlými pojistkami třídy CC (max. 15 A) nebo jističem uvedeným v seznamu (max. 10 A).

2. Pokyny k montáži a připojení

2.1. <u>Rozvržení prostoru pro regulátor</u>

• Rozměry: viz strana 11

K upevnění regulátoru na místě se používají čtyři šrouby M5 nebo M6. Šrouby musí být dotaženy na jmenovitý točivý moment 2,5 Nm.

- Vzdálenosti vrtaných otvorů:
 - Výška: 175 mm
 - Šířka: 115 mm
 - Průměr: 6 mm max.

Aby bylo zajištěno dostatečné chlazení, musí být výrobek umístěn tak, aby byl kolem chladiče dostatek prostoru.

Při instalaci do skříňky musí být regulátor umístěn tak, aby byla umožněna volná cirkulace vzduchu v chladiči a kolem produktu. Proto se doporučuje, aby byl regulátor nainstalován vodorovně v základně skříně tak, aby chladič byl umístěn svisle.

K udržení regulátoru v rámci výše popsaných limitů prostředí může být zapotřebí použití ventilačního, chladicího nebo dokonce topného systému.

Poznámka: Pokud chcete integrovat komponenty, které nesplňují výše uvedené minimální předpoklady, obraťte se na technickou podporu.

2.2. Varovné symboly pro instalaci

<u>Viz část 1.4.</u>

Pokud je regulátor spuštěný, neodpojujte žádné konektory ani neprovádějte žádné úpravy zapojení, protože by mohlo dojít k úrazu elektrickým proudem a/nebo zničení regulátoru a/nebo poškození alternátoru.

Totéž platí pro úpravy hlavních nastavení alternátoru, jako jsou: strojní data, zapojení transformátoru měření napětí a proudu, horní nebo dolní referenční limity, řízení spouštění atd., které je třeba provést při vypnutém alternátoru.

Vždy je třeba dodržovat provozní rozsahy regulátoru D550. Změna nastavení na nevhodná napětí nebo proudy může způsobit částečné nebo úplné zničení regulátoru a/nebo alternátoru.

Napájecí vstup musí být chráněn jističem nebo pojistkami, aby se zabránilo nevratnému poškození regulátoru v případě zkratu nebo přepětí. <u>Viz část 1.12.</u>

2.3. <u>Zapojení</u>

Regulátor D550 musí být připojen k různým měřicím, výkonovým a řídicím signálům, aby mohl vykonávat své regulační funkce:

• Měření napětí alternátoru:

Obrázek 1: zapojení snímání napětí

Pokud jsou hodnoty napětí mezi jednotlivými fázemi na alternátoru vyšší než 480 V stř. rms (maximum 686 V stř. rms po dobu 10 sekund), je nutné použít napěťové transformátory.

Electric Power Generation

Digitální regulátor napětí D550

Zapojení	Elektrické schéma
třífázové	

Poznámka: Konfigurace softwaru pro připojení k měření napětí a proudu alternátoru musí odpovídat schématu zapojení alternátoru. Pokud je použit pouze jeden transformátor proudu, měl by být nainstalován na fázi U nebo V. Pokud není toto zapojení dodrženo, výsledné výpočty výkonu a účiníku budou nesprávné. Závisí také na směru rotace. V případě potřeby nahlédněte do přílohy, kde naleznete příklady vektorových permutací.

Pro větší přesnost jsou k dispozici dva možné měřicí rozsahy (konfigurované automaticky podle měřeného napětí):

Měřicí rozsahy	
Dolní rozsah	110 V stř. rms max.
Horní rozsah	530 V stř. rms max.

• Měření napětí sítě:

Obrázek 2: Zapojení snímání napětí sítě

Pokud jsou hodnoty napětí sítě mezi jednotlivými fázemi vyšší než 480 V stř. rms (maximum 686 V stř. rms po dobu 10 sekund), je nutné použít napěťové transformátory.

Zapojení	Elektrické schéma
Fáze/fáze	

Vstupy pro měření teploty

Jednotlivé vstupy lze nakonfigurovat jako:

- PT100
- CTP alternátor s 1 snímačem teploty
- CTP alternátor s 3 snímači teploty v sérii
- CTP uživatel (konfigurovatelné)

PT100:

Lze připojit pouze 2vodičové snímače teploty Pt100. Pokud používáte 3- nebo 4vodičové snímače teploty, musí být k jejich ekvivalentním měřicím vodičům připojeny kompenzační kabely:

Rozsah měření pro tyto vstupy teplotního snímače je -50 °C až 250 °C. Pro každý připojený snímač lze definovat dvě prahové hodnoty: práh alarmu a práh vypnutí.

CTP:

Lze připojit pouze 2vodičové odporové snímače teploty.

Měřicí rozsah pro tyto vstupy je 130 Ω až 4700 Ω . Pro každý připojený snímač lze definovat jednu prahovou hodnotu – práh vypnutí.

UPOZORNĚNÍ: Teplotní vstupy jsou neizolované a jsou vztaženy k uzemnění výrobku.

• Vstupy/výstupy a relé:

- 4 konfigurovatelné analogové vstupy nebo výstupy
- 8 konfigurovatelných digitálních vstupů nebo výstupů
- 2 reléové výstupy s normálně otevřenými beznapěťovými kontakty

Obrázek 4: Zapojení vstupů/výstupů

• Režim analogových vstupů:

Každý z analogových vstupů může být konfigurován s několika režimy:

Zapojení	Elektrické schéma
Potenciometr	1k ohms AIO 10V
4–20 mA +/-10 V 0/+10 V	0V ▷ 0V Signal ▷ AIO 10V

Každý vstup je definován cílovým parametrem a jeho typem signálu (potenciometr, 4–20 mA, ±10 V, 0/10 V) a jeho limity minima a maxima. Napětí 10 V je přítomno pouze na svorkovnici pro zajištění referenčního napětí nebo při použití potenciometrů s hodnotami vyššími než 1 kΩ konfigurovanými v režimu 0–10 V s 3vodičovým připojením.

UPOZORNĚNÍ: Analogové vstupy jsou neizolované 0 V je vztaženo k uzemnění výrobku.

• Režim analogových výstupů:

Každý z analogových výstupů může být konfigurován s několika režimy:

Zapojení	Elektrické schéma
4–20 mA +/-10 V 0/+10 V	0V ⊲ UV Signal ⊲ AIO

Každý výstup je definován zdrojovým parametrem a jeho typem signálu (4–20 mA, ±10 V, 0/10 V) a jeho limity minima a maxima.

UPOZORNĚNÍ: Analogové výstupy jsou neizolované 0 V je vztaženo k uzemnění výrobku.

• Digitální výstupy:

Každý z digitálních výstupů má tranzistor MOSFET s otevřeným kolektorem. Každý z nich může podporovat maximální napětí 30 V ss. a maximální proud 150 mA.

Jsou konfigurovány zdrojovým parametrem (alarm, probíhající režim regulace atd.) a jeho aktivačním režimem: normálně otevřený (aktivní, nízký) nebo normálně uzavřený (aktivní, vysoký).

UPOZORNĚNÍ: Digitální výstupy jsou neizolované. 0 V je vztaženo k uzemnění výrobku. Dbejte rizika obrácené polarity napětí, která by mohla způsobit přerušení výstupu.

Digitální vstupy:

Každý digitální vstup by měl být řízen beznapěťovým kontaktem.

Jsou konfigurovány cílovým parametrem (řízení režimu regulace, spuštění atd.) a jeho aktivačním režimem: normálně otevřený (aktivní, nízký) nebo normálně uzavřený (aktivní, vysoký).

UPOZORNĚNÍ: Digitální vstupy jsou neizolované. 0 V je vztaženo k uzemnění výrobku.

Reléové výstupy:

Reléové výstupy jsou beznapěťové kontakty izolované od uzemnění výrobku. Odolávají maximálnímu napětí 125 V stř. – 5 A nebo 30 V ss – 3 A. Maximální přechodné zatížení relé je 90 W / 1290 VA.

> Zapojení
> Elektrické schéma
>
>
> Reléový výstup
> 125VAC - 5A max. 30VDC - 3A max.
> DOx-1 DOx-2

Jsou konfigurovány zdrojovým parametrem (alarm, probíhající režim regulace atd.) a jeho aktivačním režimem: normálně otevřený (aktivní, nízký) nebo normálně uzavřený (aktivní, vysoký).

Pomocné napájení stejnosměrným napětím:

Pomocné napájení se používá k vytváření napětí potřebných pro měřící, řídicí a monitorovací obvody regulátoru. Přípustný rozsah napětí je 8 V ss. až 35 V ss. Doporučená napájecí napětí jsou 12 V ss. až 14 V ss. nebo 24 V ss. až 28 V ss.

Zapojení	Elektrické schéma
	835VDC - +VAux
Pomocné napájení	

Napájení střídavým proudem:

Výkonová fáze regulátoru D550 může mít několik různých typů zdrojů: SHUNT, PMG, AREP nebo externí zdroj napájení. Tato fáze sestává z usměrňovacích diod, které jsou znázorněny v elektrickém schématu níže.

Poznámka: Podle zdroje napájení bude implementován vhodný systém předpětí kondenzátoru, aby se zabránilo jeho poškození. Celková hodnota kondenzátoru: 940 μF. Maximální předpětí: 2 A

Maximální napájecí napětí je 300 V stř. mezi každým z připojovacích bodů X1, X2, Z1, Z2. Při použití ve Spojených státech musí být tento napájecí vstup chráněn pojistkami třídy CC (max. 15 A) nebo inverzní časový spínač (max. 10 A).

Zapojení	Elektrické schéma
AREP	H1 $\begin{cases} X1 & X1 \\ X2 & X2 \\ H3 \begin{cases} Z1 & Z1 \\ Z2 & Z2 \end{cases}$
PMG	PMG X1 Z1 Z2
SHUNT – fáze/nulový vodič (nízkovoltážní)	$rac{1}{2}$ $rac{$

• Pole budiče:

Zapojení	Elektrické schéma
Pole budiče: F+ F-	F- F+

• Měření proudu alternátoru (CT s paralelním provozem):

Proud alternátoru lze měřit v 1 fázi nebo ve 3 fázích. Instalaci jednoho CT lze provést na fázi U nebo fázi V.

Zapojení	Elektrické schéma
S jedním CT na fázi	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Pouze s jedním CT	$P_{2} = P_{2} = P_{2$

Electric Power Generation

Digitální regulátor napětí D550

• Měření proudu alternátoru pro funkci "kompenzace příčného proudu":

Pro kompenzaci příčného proudu jsou měřicí vstupy z CT pro paralelní provoz (pokud je připojen) a CT pro příčný proud připojeny napevno:

- CT pro paralelní provoz musí být instalován na fázi U.
- CT pro příčný proud musí být instalován na fázi V.

Zapojení okruhu mezi alternátory musí odpovídat následujícímu schématu (příklad pro x alternátorů vybavených D550).⁴⁵⁶

⁴ Jestliže není zařízení v provozu, musí být kontakt K uzavřen. Jestliže je zařízení v provozu, musí být otevřen.

⁵ Obvod s diferenciálním proudem neumožňuje výpočet výkonu na regulátoru D550. Pokud je tento druh měření pro správné fungování aplikace nezbytný, musí být ke vstupu měření proudu alternátoru připojen další CT.
⁶ Ke vstupu příčného proudu na každém regulátoru musí být připojeny 1ohmové rezistory.

• Měření proudu sítě pro funkci "regulace účiníku v odběrném místě" nebo funkci "grid code":

Pro regulaci účiníku v odběrném místě nebo pro funkci grid code jsou měřicí vstupy z CT paralelního provozu a CT pro měření proudu v síti dány:

- CT pro paralelní provoz musí být instalován na fázi U.
- CT pro měření proudu rozvodné sítě musí být instalován na fázi V.

Poznámka: Pokud nejsou CT instalovány na označených fázích, bude možné změnit fázový úhel v konfiguraci.

2.4. Upozornění k zapojení

Kabely nesmí být delší než 100 m.

Aby bylo zajištěno splnění požadavků norem IEC 61000-6-2, IEC 61000-6-4 a IEC 60255-26 je nezbytné použít stíněné kabely, pokud je regulátor D550 instalován mimo svorkovnicovou krabici.

Celkový odpor budicí smyčky (výstup a návrat) nesmí přesáhnout 5 % odporu budiče bez ohledu na délku kabelu.

Celkový odpor kabelů napájecího systému nesmí přesáhnout 5 % odporu budiče bez ohledu na délku kabelu.

Pro informaci, při teplotě 20 °C činí odpor měděných kabelů v mΩ/m přibližně:

Průřez (mm²)	Odpor (mΩ/m)
1,5	13,3
2,5	7,98
4	4,95
6	3,3
10	1,91

Příklad výpočtu:

Pro 10Ω budičů

- Maximální odpor kabelu = $0,5\Omega$ (2 x $0,25\Omega$)
- Průřez jako funkce vzdálenosti mezi regulátorem a alternátorem:

Vzdálenost (m)	Průřez (mm²)
30	2,5
50	4
75	6
100	10

3. Popis provozních režimů

3.1. <u>Režimy regulace</u>

Různé režimy regulace budou konfigurovány na základě provozu alternátoru (samostatný, paralelní mezi zařízeními, paralelní se sítí). Na základě těchto různých provozních režimů bude nutné aktivovat určité režimy regulace (z nichž některé jsou důrazně doporučené nebo dokonce povinné a jiné volitelné).⁷ Nejjednodušší příklady jsou znázorněny níže:

• Příklad č. 1: Alternátor je připojen pouze k zatížení (továrna, osvětlení, čerpadlo atd.)

- Regulátor pracuje pouze v režimu regulace napětí.
- Není nutné měřit proud alternátoru. V tomto příkladu nelze uvést žádný jmenovitý výkon a nelze aktivovat limit proudu statoru ani kompenzaci zatížení ani kvadraturní úbytek.
- **Regulace budicího proudu je volitelná**. V tomto případě musí být referenční napětí trvale nastaveno tak, aby odpovídalo existujícímu zatížení a aby nedocházelo k riziku poškození zatížení nebo zařízení (riziko přepětí nebo podpětí a riziko nadměrného buzení).

⁷ Následující schémata jsou uvedena pouze pro informaci, neberou v úvahu žádné stupňové transformátory ani transformátory pro monitorování napětí. Přítomnost transformátoru pro měření proudu alternátoru však závisí na použití režimu regulace.

• Příklad č. 2: Alternátor je připojen k jiným alternátorům a k zatížení (továrna, osvětlení, čerpadlo atd.).

- Regulátor pracuje pouze v režimu regulace napětí.
- Aby byl jalový výkon zátěže rovnoměrně rozdělen mezi všechna spuštěná zařízení, vyberte jeden ze dvou následujících režimů:
 - Kvadraturní úbytek: úbytek napětí podle procentuální hodnoty jmenovitého jalového zatížení působícího na zařízení. V tomto případě je měření proudu alternátoru na vstupu pro měření proudu alternátoru povinné.
 - Příčný proud: podíl jalového zatížení z proudové smyčky. V tomto případě je třeba připojit vyhrazený CT a na vstupu "příčného proudu" je třeba vytvořit proudovou smyčku. Pro více informací se obraťte na oddělení technické podpory.
- Poznámka: Kompenzaci zatížení nelze aktivovat, pokud je aktivní funkce kvadraturní úbytek nebo příčný proud.
- **Regulace budicího proudu je volitelná**. V tomto případě musí být referenční napětí trvale nastaveno tak, aby odpovídalo existujícímu zatížení a aby nedocházelo k riziku poškození zatížení nebo zařízení (riziko přepětí nebo podpětí a nadměrného buzení).

• Příklad č. 3: Alternátor je instalován paralelně k síti⁸

- **Regulátor pracuje po spuštění alternátoru pouze v režimu regulace napětí.** Korekce kvadraturního úbytku a příčného proudu není potřebná pouze v případě, že je alternátor připojen k síti.
- Obvod pro přizpůsobení napětí se používá k nastavení napětí alternátoru na napětí sítě před připojením. To lze provést automaticky přímým měřením napětí po spojovacím jističi nebo změnou referenčního napětí alternátoru.
- Regulace účiníku alternátoru, kVAr nebo účiníku v jednom bodě sítě musí být aktivována ihned po zapnutí spojovacího jističe.
 - Měření proudu alternátoru je nezbytné ve všech těchto scénářích regulace.
 - Regulace účiníku v jednom bodě sítě také vyžaduje měření napětí a proudu alternátoru a měření napětí a proudu sítě v požadovaném bodě (v tomto případě je účiník vypočítán pomocí regulátoru D550).
- Regulace budicího proudu je volitelná. V tomto případě musí být referenční napětí trvale nastaveno tak, aby odpovídalo existující zátěži a aby nedocházelo k riziku poškození zátěže nebo zařízení.

Poznámka: Různé typy regulace mají prioritu. Pořadí je následující (od nejvyšší priority po nejnižší prioritu):

- Budicí proud
- Jestliže je stykač přípojky sítě uzavřen:
 - Účiník sítě
 - kVAr alternátoru
 - Účiník alternátoru
- Obvod pro přizpůsobení napětí
- Napětí

Více viz <u>příloha 8.2</u> Priority režimu regulace regulátoru.

Poznámka: Přepnutí z jednoho režimu regulace na druhý je bez výkyvů.

⁸ Za síť je považován jakýkoli zdroj elektrické energie, jehož jmenovitý výkon je nejméně desetkrát vyšší než jmenovitý výkon alternátoru.

3.2. Ovládání režimů a informace

Přepnutí z jednoho režimu regulace na druhý, převod provozních režimů a monitorování alarmů nebo vypnutí lze provádět několika způsoby: vstupy a výstupy nebo komunikace.

Prohlédněte si také schémata alternátoru, na kterém je váš regulátor nainstalován.

3.3. Ochranné funkce

Regulátor D550 v sobě spojuje konkrétní ochranná zařízení:

- Podpětí (ANSI kód 27);
- Poruchy diody otevřená dioda nebo zkrat diody
- Přepětí (ANSI kód 59);
- Nedostatečná frekvence (ANSI kód 81L);
- Nadměrná frekvence (ANSI kód 81H);
- Směrové aktivní přetížení (ANSI kód 32P);
- Směrové reaktivní přetížení (ANSI kód 32Q);
- Kontrola synchronizace (ANSI kód 25).

3.4. Související funkce

Jiné funkce regulátoru D550 lze použít k záznamu událostí, dohledu nad fázovou synchronizací alternátoru s rozvodnou sítí nebo k vytvoření jednoduchých řídicích systémů nebo funkcí pro monitorování referencí. Regulátor D550 také integruje vyhrazené funkce pro provozovatele sítě (funkce grid code).

4. Komunikace

4.1. <u>USB</u>

- Pro "USB" komunikaci použijte k tomu určený kabel s konektorem USB "A" na straně počítače a konektorem USB "B" na straně regulátoru
- Pokud je regulátor D550 připojen, musí se objevit v levé dolní části počítačového softwaru PC EasyReg Advanced:

D550 CONNECTE

Další podrobnosti o generování a přijetí rámce tímto produktem jsou k dispozici v dokumentaci ke sběrnici CAN regulátoru D550 s označením 5806.

Popis na produktu	Barva	Význam			
(Šipka dolů) Hz	ČERVENÁ	Chyba frekvence SVÍTÍ = Nízké otáčky			
(Šipka dolů/nahoru) Volt	ČERVENÁ	Chyba napětí	SVÍTÍ = Přepětí nebo podpětí		
			SVÍTÍ = Přehřívání rotoru		
(Šipka dolů/nahoru) Exc.	ČERVENÁ	Chyba buzení	BLIKÁ = Rotor je přetížen nebo nedostatečné		
			buzení nebo minimální buzení		
Fault (dioda)	ČERVENÁ	Chyba diody SVÍTÍ = Otevřená dioda nebo zkrat diody			
I Exc.	ŽLUTÁ	Regulace budicího proudu	SVÍTÍ = Manuální režim buzení		
PF / kVAr	ŽLUTÁ	Regulace účiníku nebo kVAr SVÍTÍ = Režim Regulace účiníku nebo kVAr			
U=U	ŽLUTÁ	Vyrovnávání napětí SVÍTÍ = Režim vyrovnávání napětí			
			SVÍTÍ = Regulace probíhá		
Power ON	ZELENA	ZAPNUTU	BLIKÁ = Produkt je pod napětím		
USB	MODRÁ	USB v pořádku SVÍTÍ = USB připojeno			

5. Pokyny k nastavení

5.1. Počítačový software

Veškerá nastavení regulátoru D550 lze provést prostřednictvím softwaru "EasyReg Advanced" dodaného s regulátorem. Na stránkách věnovaných nastavení parametrů jsou popsány zejména parametry alternátoru, předpisy, limity a ochranná zařízení.

5.1.1. Instalace softwaru

Ke konfiguraci regulátoru se používá software EasyReg Advanced®.

Poznámka: Tento program je kompatibilní pouze s počítači s operačním systémem WINDOWS® verze Windows 7 a Windows 10.

Před spuštěním programu zkontrolujte, zda máte pro svoji stanici oprávnění administrátora.

Krok 1: Zvolte jazyk instalace.

🧃 EasyregAdv	ranced	-		×
Choisi Choos	ssez la langue e a language			
	Français			
	Anglais			
Réalisé avec	WINDEV	ок 🗸	Annuler (9

Krok 2: Zvolte typ instalace:

- Rychlá instalace: Soubory jsou zkopírovány automaticky a je vytvořen adresář prosoftware
- Vlastní instalace:
 - Zvolte adresář pro instalaci.

🗃 EasyregAdvanced - S	Setup wizard	-		×	
	Welcome to the setup wizard of EasyregAdvanced This program will install EasyregAdvanced on your computer. We recommend that you close all the curent applications before running	Ver	sion: 1 up prog	.0.183 ram.	
	C:\Program Files (x86)\EasyregAdvanced\			* * *	
Powered by WINDEV	← Back Next →	C	ancel	0	

- Po zvolení adresáře klikněte na tlačítko "Next" (Další).

Electric Power Generation	Instalace a údržba	5744 cz - 2024.01 / e

- Pokud je nastavená cesta správná, potvrďte instalaci kliknutím na tlačítko "Install" (Instalovat).

Krok 3: Po dokončení instalace můžete zvolit, zda software spustit (políčko je ve výchozím nastavení zaškrtnuté), a spravovat vytvoření zástupců. Chcete-li stránku instalace zavřít, klikněte na tlačítko "Done" (Hotovo).

Na ploše je vytvořen zástupce:

5.1.2. Různé úrovně přístupu v rámci softwaru Easyreg Advanced

K dispozici jsou dva režimy:

- Uživatel (standard): přístup k parametrům pouze pro čtení.

- Expert: plný přístup k různým funkcím regulátoru v režimech pro čtení a zápis.

5.1.3. Popis panelu a karet

Software má podobu jednoho okna s hlavním panelem a spodní částí, ve které se otevírají dílčíokna.

5 Main windows - [Settings]				- 0	×
Home Communication Monitoring Windows Inform	mation				_ 8 ×
[+ 	Ö.	Simulation	Voltage	ł	
General	Setting	Tool	Regulator status		

Panel obsahuje 5 karet:

• Karta "Home" (Domů):

• Karta "Communication" (Komunikace):

Poznámka: Před exportem parametrů bude uživatel vyzván k potvrzení a kontrole stavu produktu (zda regulace probíhá či neprobíhá). Pokud regulace probíhá, bude potvrzení vyžadováno znovu.

• Karta "Monitoring" (Monitorování):

• Karta "Information" (Informace):

Regulátor D550 je vybaven počitadlem provozních hodin (v hodinách a minutách), který jedostupný

v okně "About 🛄" (O softwaru).

Poznámka: Toto počitadlo je aktualizováno každých 10 minut, a to pouze tehdy, když je dosažena nastavená hodnota regulace napětí.

V tomto okně lze rovněž provést aktualizaci firmwaru podle následujícího znázornění.

• Okno "Regulator state" (Stav regulátoru):

Voltage	
Regulator status	

5.1.4. Komunikace s regulátorem D550

Komunikace mezi regulátorem D550 a počítačovým softwarem. Když je komunikace navázána, zobrazí se v levém dolním rohu počítačového softwaru potvrzující zpráva (jak je znázorněno níže).

5.1.5. Popis okna "Configuration" (Konfigurace)

Toto okno je tvořeno několika stránkami pro konfiguraci celého provozu alternátoru. K procházení mezi stránkami použijte tlačítka "Next" (Další) a "Previous" (Předchozí) neboklikněte na seznam stránek.

Poznámka: Další podrobnosti o těchto stránkách jsou uvedeny v částech popisujících vytvoření nové vlastní konfigurace.
Rychlá konfigurace:

Vlastní konfigurace:

cation name		Grid/	Load				_
42.3 S4 AREP 50.0Hz 400V							-
J serial number							
ierator data							
Rated voltage (V)	400.00					EF.	
Rated frequency (Hz)	50.00			1	L H	110	110
Rated power factor	0.80			1 in	ARE-N.	Annu St	
Rated apperant power (kVA)	35.00						
Rated nominal power (kW)	28.00						
Rated reactive power (kVar)	21.00			MARY /	seal.		647
Rated current (A)	50.52						and a
Pole ratio between exciter and generator	0.0 🖬						
Itation data							
Field inductor resistance (Ohms)	7.36		10 21 10 22	A F. F.	i i i i i i i i i i i i i i i i i i i	u v v w R	1
Shutdown field current (A)	0.50	550					
Rated field current (A)	2.76	1.00			•	2000	
		eonen (E):	X		Nider 0550		

Limity: tato stránka obsahuje nastavení parametrů pro různé limity zařízení (maximální a minimální budicí proud, limit proudu statoru).

 Ochranná zařízení: tato stránka obsahuje nastavení parametrů ochrannýchzařízení pro regulátor D550 (porucha rotační diody, přepětí a podpětí, teploty atd.)

ettings						
Prote	ections		-	Previous	Next 🔶 🕨 🛓	Fault rese
chine fault	Regulator faul	t Power bridge Temperature protections F	aults group			
	Under voltage fai	ult detected				
	Activation	Undervoltage % setpoint (%)	85.00	Auto-Reset		
		Undervoltage delay (s)	1.00	Action after fault	0: No action	
	Over voltage faul	It detected				
	Activation	Overvoltage % setpoint (%)	115.00	Auto-Reset		
		Overvoltage delay (s)	1.00	Action after fault	0: No action	
	Under frequency	fault detected				
	Activation	Underfrequency setpoint (Hz)	47.00	Auto-Reset		
	_	Underfrequency delay (s)	1.00	Action after fault	0: No action	
	Over frequency f	ault detected				
	Activation	Overfrequency setpoint (Hz)	53.00	Auto-Reset		
		Overfrequency delay (s)	1.00	Action after fault	0: No action	
	Open diode fault	detected				
	Activation	Open diode percentage of field current (%)	5.00	Auto-Reset		
		Open diode delay (s)	1.00	Action after fault	0: No action	
	Shorted diode fai	ult detected				
	Activation	Shorted diode percentage of field current (%)	10.00	Auto-Reset		
	_	Shorted diode delay (s)	1.00	Action after fault	0: No action	
	Motor start fault	detected				
	Activation	Motor start delay (s)	30.0	Auto-Reset		
	_			Action after fault	0: No action	
	Reverse active p	ower fault detected				
	Activation	Reverse active power % setpoint (-) (%)	-10.00	Auto-Reset		
	_	Reverse active power delay (s)	1.00	Action after fault	0: No action	-
	Reverse reactive	power fault detected				
	Activation	Reverse reactive power % setpoint (-) (%)	-10.00	Auto-Reset		
	_	Reverse reactive power delay (s)	1.00	Action after fault	0: No action	

Jedna stránka umožňuje provádět vytváření skupin chyb nebo shrnout informace jako "syntézu chyb".

Protections	- I + Previous	Next 🔸 🕨	1	Fault res
achine fault Regulator fault Power bridge Temperature protections raults	group			
Fault	Group 1	Group 2	Group 3	Group 4
Overvoltage fault class				
Indervoltage fault class				
Overfrequency fault class				
Underfrequency fault class				
Open diode fault class				
Shorted diode fault class				
Reverse active power fault class				
Reverse reactive power fault class				
PT100 1 Alarm (Over temp) fault class				
PT100 1 fault class				
PT100 2 Alarm (Over temp) fault class				
PT100 2 fault class				
PT100 3 Alarm (Over temp) fault class				
PT100 3 fault class				
PT100 4 Alarm (Over temp) fault class				
PT100 4 fault class				
PT100 5 Alarm (Over temp) fault class				
PT100 5 fault class				
PTC 1 fault class				
PTC 2 fault class				
PTC 3 fault class				
PTC 4 fault class				
PTC 5 fault class				
loss of sensing fault class				
Unbalance voltage fault class				
Unbalance current fault class				
Short circuit fault class				
IGBT fault class				
Motor start fault class				
Power bridge overload fault class				
Battery under voltage fault class				
CAN under voltage fault class				

• **Vstupy/výstupy**: tato stránka obsahuje přehled nastavení parametrů pro digitální a analogové vstupy/výstupy.

Diat	1 Innut										
Digita Digi Inp	tal ut	Act	ive	Destination		Digital Outp	Source	Active	Digital Output		
DI1	Active	e Lov	v 💌 None	e		None		 Active Low 	▼ D01		
DI2	Active	e Lov	v None	9		None		Active Low	DO2		
DI3	Active	e Lov	v None	e		None		Active Low	DO3		
DI4	Active	e Lov	v None	e		None		Active Low	DO4		
DI5	Active	e Lov	v None	e		None		Active Low	DO5	•1	
DI6	Active	e Lov	v None	Э		None		Active Low	DO6		
DI7	Active	e Lov	v None	9		None		Active Low	DO7		
DI8	Active	e Lov	v None	9		None		Active Low	DO8		
						None		Active Low	RL1		OUT
						None		Active Low	RL2		001
											9
Analo	g Inputs/C	outp	uts								
D	Configura Al	ation		Destination	0% value	e 100% value	Configuration AO) Source	e	0% valu	ie 10
AI01	0-10V	•	None		▼ 0.00	0.00	None	None		0	0
AI02	0-10V		None		0.00	0.00	None	None		0	0
AI03	0-10V		None		0.00	0.00	None	None			
404	0-10V		None		0.00	0.00	None	None		0	0

• **Funkce křivek**: tato stránka se používá k definování řídicích funkcí parametru jako funkce jiného parametru vykreslením 5 bodů.

🔏 Setting	<u>js</u>				
Cu	irves I	Function	IS	▼ 🕶 Previous Nex	xt 🎐 Ы
X axis	Generator A	verage Voltage (F	h-Ph)	Y axis Reactive power setpoint	▼ Reset
Point 1	384.00	1,400.00		Reactive power setpoint=f(Generator Av	verage Voltage (Ph-Ph))
Point 2	389.00	0.00		1540	
Point 3	400.00	0.00			
Point 4	415.00	0.00		80.4 c 382 383 388 388 390 390 390 390 390 396 400 396 400 400 400 400 400 400 400 400 400 40	406 408 412 414 414 418 426 422 420 23.6
Point 5	420.00	-1,400.00	1	1000	4
				1940	
X axis	None			Y axis None	✓ Reset
Point 1	0.00	0.00		None=f(None)	
Point 2	0.00	0.00			
Point 3	0.00	0.00			
Point 4	0.00	0.00			
Point 5	0.00	0.00	1		

• Logické/analogové členy: tato stránka se používá ke konfiguraci jednoduchých logických funkcí na úrovni vstup/výstup a typ členu.

Settings		- • ×
Logic/analogic gates	✓ ✓ Previous Next → ►	
EI		•
E2		
E1		
E2		
E1		
E2		
E1		
E2	S=1 if (E1=1 et >=E2) **4 ?	
E1		
E2		
	S=E1 + E2 n'5 ? 🚹	-
User variable 1 0.00	User Variable 2 User Variable 3 User Variable 4 User Variable 5 0.00 0.00 0.00 0.00 0.00	
User variable 6	User variable 7 User variable 8 User variable 9 User variable 10	
0.00	0.00 0.00 0.00 0.00	

 Záznamník dat: tato funkce je k dispozici, když jsou ze stránky CAN připojeny volitelné moduly Easy Log nebo Easy Log PS. Umožňuje definovat parametry a spouštěče, které budou uloženy do souboru protokolu. Lze nakonfigurovat různé provozní režimy pro tyto spouštěče, spouštěcí hodnoty parametrů a vzorkovací frekvenci.

Fast log Slow log CAN Configuration RTC Configuration Open file
Add 🕂 Delete 🗕 Delete all 🚫
Parameters to be recorded Description
001.014:Real Power KW V (kW) 💌 Real Power KW V (kW)
1/4 Sampling time 1 s
001.014: Real Power KW V (kW)
OR ▼ 001.014: Real Power KW V (kW) ▼ ₹
Number of points before trigger 3,996
Log time before trigger 01 h 06 m 36 s 000 ms
Number of lines in the file 5,000
Estimated file size 195.31 KB
Validate 🗸 Cancel 🚫

• **Synchronizace**: tato stránka se používá k definování parametrů pro synchronizaci mezi alternátorem a sítí.

• **Grid code**: Tato funkce je k dispozici, když jsou připojeny volitelné moduly Easy Log nebo Easy Log PS. Tato stránka se používá k definování parametrů vyhrazených pro ochranu distribuční sítě.

5.1.6. Okno "Oscilloscope" (Osciloskop)

Toto okno slouží ke sledování vývoje měřených hodnot až 8 parametrů současně.

5.1.6.1. <u>Křivky</u>

Každá křivka je popsána: barvou, zdrojovým parametrem, maximální a maximální hodnotou. Má vlastní osu stejné barvy, jakou má křivka.

- Postup změny barvy:
 - Klikněte na barevný kruh vpravo vedle názvu křivky a zobrazí se paleta s předdefinovanými barvami.

Automatic						
Other Colors						

- Kliknutím zvolte jednu z dostupných barev.
- Okno pro výběr barev se automaticky zavře a kruh poté bude mít zvolenou barvu.

Pokud chcete konfigurovat barvu, která není v paletě k dispozici, klikněte na tlačítko, Other colors..." (Další barvy...). Paleta se poté změní. Přemístěte černý kříž na vybranou barvu nebo zadejte hodnoty do textových polí (každou z hodnot v rozmezí 0 až 255), čímž definujete barevné hodnoty RGB. Poté klikněte na tlačítko "OK".

Poznámka: Pokud již nechcete měnit barvu, klikněte mimo paletu. Paleta se automaticky zavře.

• Výběr parametru k vykreslení

- Klikněte na zaškrtávací políčko.
- Pokud již bylo políčko zvoleno, zobrazí se potvrzující zpráva. Kliknutím na tlačítko "Yes" (Ano) otevřete okno se seznamem parametrů.

🕒 Oscillos	cope *	\times
?	Do you want ch	ange your parameter?
	Yes	No

- Pokud políčko dosud vybráno nebylo, zobrazí se přímo okno se seznamem parametrů.
- Z rozevíracího seznamu vyberte parametr, který chcete sledovat. Tento parametr může mít analogovou nebo digitální hodnotu (např. režim regulace).
- Chcete-li použít zvolený parametr, klikněte na tlačítko "OK", nebo klikněte na tlačítko "Cancel"(Zrušit), pokud nechcete provést žádné změny.

🔀 Mo	onitor settings		×
Para	Imeter		
Ran	ge: (kW)		
Min.	0	Max.	500
		ок 🗸	Cancel 🚫

 Úprava rozsahu vykreslení: v případě potřeby změňte minimální a maximální hodnoty. Tyto hodnoty budou zohledněny a stupnice křivky upravena, jakmile zavřete některé z polínebo stiskněte klávesu "Enter".

Curve 2[Value] ^
Real Power H	ww 🔍 🔵
Minimum value	Maximum value
0	500

Když je monitor zapnutý, zobrazí se hodnota proudu v hranatých závorkách.

5.1.6.2. <u>Spouštěč</u>

Spouštěč slouží ke spuštění činnosti osciloskopu, pokud hodnota vybraného parametru překročíhorní (šipka směrem nahoru) nebo dolní (šipka směrem dolů) hodnotu.

- Vyberte jednu z křivek, která způsobí vypnutí
 - Klikněte na zaškrtávací políčko.
 - Pokud již bylo políčko zvoleno, zobrazí se potvrzující zpráva. Kliknutím na tlačítko "Yes" (Ano) otevřete okno se seznamem parametrů.

🕒 Oscillo	scope *	×
?	Do you wa	nt to change of curve?
	Yes	No

- Pokud políčko dosud vybráno nebylo, zobrazí se přímo okno se seznamem parametrů.
- Z rozevíracího seznamu vyberte parametr, který chcete sledovat. Tento parametr může mít analogovou nebo digitální hodnotu (např. režim regulace).
- Chcete-li použít zvolený parametr, klikněte na tlačítko "OK", nebo klikněte na tlačítko "Cancel"(Zrušit), pokud nechcete provést žádné změny.

×	Monitor settings ×	
	Curve	
	Curve3: Parameter name	
	OK 🗸 Cancel 🚫	
	OK 🗸 Cancel 🚫	

- Zadejte prahovou hodnotu, která má být překročena
- Vyberte směr překročení (nahoru nebo dolů)
- Chcete-li spouštěč aktivovat, klikněte na tlačítko "GO".
- Chcete-li spouštěč zrušit, zrušte výběr křivky.

5.1.6.3. Kurzory

Pro procházení křivek jsou k dispozici dva kurzory. Rozdíl mezi dvěma hodnotami Y (hodnoty na křivce) je pro každou křivku zobrazen v části "Delta Y" a "Delta X" (čas v sekundách) značí čas mezi dvěma kurzory.

Cu	rsor		^
	Cursor 1	-	?
	Cursor 2	-	
с	Y Curs1	Y Curs2	Delta Y
1	0.00	0.00	0.00
2	999.90	999.90	0.00
з	0.00	0.00	0.00
4	0.00	0.00	0.00
5	0.00	0.00	0.00
6	0.00	0.00	0.00
7	0.00	0.00	0.00
8	0.00	0.00	0.00
С	X Curs1	X Curs2	Delta X
	2.10	3.87	1.77

5.1.6.4. Přechodový test

Přechodový test slouží ke kontrole odezvy PID při změně referenční hodnoty režimu regulace proudu.

Je rozdělen maximálně do 5 kroků, přičemž každý z nich může mít jinou referenční hodnotu. Parametry PID lze změnit přímo při odeslání příkazu.

 Klikněte na tlačítko "Start a transient test" (Spustit přechodový test). Otevře se následující okno:

🔀 Transient	mode configu	uration	×
Volta	ge reg	gulation	า
Referency	400	Step time	
Step 1	400.0	53	P 9,000
Step 2	350.0		I 120
Step 3	450.0		D 1,000
Step 4	0.0		G 100
Step 5	0.0		
Referency	400		
		Run 🗸	Cancel 🚫

- Postup konfigurace přechodového testu:
 - Kliknutím na příslušné zaškrtávací políčko zvolte 1 až 5 kroků.
 - Pro každý zvolený krok definujte referenční hodnotu.
 - Definujte čas mezi jednotlivými kroky.
- Hodnoty PID lze změnit za účelem úpravy zesílení.

Po nastavení parametrů klikněte na tlačítko "OK".

Test bude poté spuštěn. Probíhající kroky jsou znázorněny zelenou barvou referenční hodnoty.

Transient te	est			^
Step 1	400	Ρ	9000	
Step 2	350	L	120	
Step 3	450	D	1000	
Step 4		G	100	
Step 5				
Stop the	trans	ien	t test	

Poznámka:

- Tento test lze kdykoli zastavit kliknutím na tlačítko "Stop the transient test"(Zastavit přechodový test). Poté se obnoví zobrazení původní reference.
- Přechodové testy nelze provést, pokud je řídicí referenční vstup řízen analogovým vstupem, protože tento řídicí režim má prioritu.
- V průběhu tohoto přechodového testu nedochází k překročením minimálního animaximálního horního či dolního limitu.

5.1.6.5. Otevření konfigurace zobrazení křivky nebo osciloskopu

Tlačítko "Otevřít" (ikona složky) v pravé dolní části okna osciloskopu slouží k otevřenísouboru konfigurace zobrazení osciloskopu (křivek, minimálních a maximálních hodnot atd.)

Po kliknutí na pravou šipku této složky budete rovněž moci otevřít soubor uložený ve formátu,..csv". Pozor – lze otevřít pouze soubory vygenerované tímto softwarem.

Když otevřete křivku ve formátu ".csv", dojde k přepsání použité konfigurace křivky uloženoukonfigurací křivky.

Přiblížení lze provést dvěma způsoby:

- Klikněte na oblast vykreslení osciloskopu
- Podržte klávesu "Ctrl" a použijte kolečko myši: budou upraveny osy X i Y
- Podržte klávesu "Alt" a otáčejte kolečkem myši: bude upravena pouze osa X, stupnice osy Y se nezmění
- Podržte klávesu "Shift" a otáčejte kolečkem myši: bude upravena pouze osa Y, stupnice osy X se nezmění

5.1.6.6. Uložení konfigurace zobrazení křivky nebo osciloskopu

Tlačítko "Uložit" (ikona diskety) v pravé dolní části okna osciloskopu slouží k uloženísouboru konfigurace zobrazení osciloskopu (křivek, minimálních a maximálních hodnot atd.)

Po kliknutí na pravou šipku této složky budete rovněž moci uložit křivky osciloskopu ve formátu,.csv".

5.1.6.7. Změna pozadí oblasti vykreslení a síly křivek

Barvu pozadí vykreslení osciloskopu lze změnit na bílou kliknutím na "^{**}". Chcete-li ji změnit na černou, klikněte na "^{**}". Kliknutím na "^{**}" změníte zobrazení mřížky. Tlačítko "¹" lze použít pro výběr ze čtyřech různých sil křivky.

5.1.7. Okno "Monitor"

Toto okno slouží ke konfiguraci zobrazení parametru různými způsoby (pomocí ukazatelů, grafů, jednotek zobrazení) a zároveň konkrétních komponent souvisejících s regulátorem. P-Q diagram, vstupy/výstupy, teploty

Umožňuje plnou konfiguraci a různé objekty lze přidávat, přemisťovat, upravovat a/nebo odstraňovat.

5.1.7.1. Jednotky zobrazení

Postup přidání nové jednotky zobrazení:

- Klikněte na tlačítko "Display" (Zobrazení). Otevře se okno.
- Z rozevíracího seznamu vyberte parametr, který chcete sledovat. Tento parametr může mít analogovou nebo digitální hodnotu (např. režim regulace).

🔀 Mo	nitor settings		×
Parar Volta	meter age UV		
Rang	e: (V)		
Min.	0	Max.	500
		ок 🗸	Cancel 📎

 Chcete-li použít zvolený parametr, klikněte na tlačítko "OK", nebo klikněte na tlačítko "Cancel"(Zrušit), pokud nechcete provést žádné změny.

 Jednotka zobrazení je poté vložena na monitor do první volné pozice (ve směru zleva doprava a poté shora dolů).

5.1.7.2. Graf

Postup přidání nového grafu:

- Klikněte na tlačítko "Graph" (Graf). Otevře se okno.
- Z rozevíracího seznamu vyberte parametr, který chcete sledovat. Tento parametr může mít analogovou nebo digitální hodnotu (např. režim regulace).

🔀 Mo	onitor settings		×
Para Vol	ameter tage UV		
Ran	ge: (V)		
Min.	0	Max.	500
		ок 🗸	Cancel 🚫

- Chcete-li použít zvolený parametr, klikněte na tlačítko "OK", nebo klikněte na tlačítko "Cancel"(Zrušit), pokud nechcete provést žádné změny.
- Graf je poté vložen na monitor do první volné pozice (ve směru zleva doprava a poté shora dolů).

5.1.7.3. Ukazatele

Postup přidání nového ukazatele:

- Klikněte na tlačítko "Gauge" (Ukazatel). Otevře se okno.
- Z rozevíracího seznamu vyberte parametr, který chcete sledovat. Tento parametr může mít analogovou nebo digitální hodnotu (např. režim regulace).

🔀 M	onitor settings		×
Para Vol	ameter Itage UV	•	
Ran	ge: (V)		
Min.	0	Max.	500
		ок 🗸	Cancel

 Chcete-li použít zvolený parametr, klikněte na tlačítko "OK", nebo klikněte na tlačítko "Cancel"(Zrušit), pokud nechcete provést žádné změny.

 Ukazatel je poté vložen na monitor do první volné pozice (ve směru zleva doprava a poté shora dolů).

5.1.7.4. Křivka způsobilosti

Chcete-li přidat křivku způsobilosti, klikněte na příslušné tlačítko. Křivka je poté vložena na monitor do první volné pozice (ve směru zleva doprava a poté shora dolů).

Poznámka: Lze zobrazit pouze P-Q diagram.

5.1.7.5. Vstupy/výstupy

Chcete-li přidat modul pro vstupy/výstupy, klikněte na příslušné tlačítko. Modul je poté vložen na monitor do první volné pozice (ve směru zleva doprava a poté shora dolů).

Digitals inputs
1 2 3 4 5 6 7 8
Digitals outputs
1 2 3 4 5 6 7 8 9 10
Analogs inputs
1 30.0 %
3 30.0 %
Analogs outputs
1 30.0 %
3 30.0 %

Poznámka: Lze zobrazit pouze jeden modul pro vstupy/výstupy.

5.1.7.6. <u>Teploty</u>

Chcete-li přidat teplotní modul, klikněte na příslušné tlačítko. Modul je poté vložen na monitor do první volné pozice (ve směru zleva doprava a poté shora dolů).

Poznámka: Lze zobrazit pouze jeden teplotní modul.

5.1.7.7. Synchronizace

Chcete-li přidat modul synchronizace, klikněte na příslušné tlačítko. Modul je poté vložen na monitor do první volné pozice (ve směru zleva doprava a poté shora dolů).

V levé části udává ukazatel úhlový rozdíl mezi napětím sítě a alternátoru. V pravé části graf označuje červenou tečkou, zda je rozdíl ve frekvenci a napětí mezi alternátorem a síťovým napětím v konfigurovaném rozsahu.

Poznámka: Lze zobrazit pouze jeden modul synchronizace.

5.1.7.8. Stav a chyby regulátoru

Chcete-li přidat modul pro stav a chyby regulátoru, klikněte na příslušné tlačítko. Modul je vložen na monitor do první volné pozice (ve směru zleva doprava a poté shora dolů).

Tento modul obsahuje provozní informace o regulátoru D550, aktuální režim regulace a seznam aktivních chyb.

5.1.7.9. Fresnelův diagram

Tento modul se používá k zobrazení Fresnelova diagramu alternátoru s hodnotami proudu, napětí a fázového posunu proudu pro každou fázi.

5.1.7.10. Fázový posun CT

Tento modul se používá k zobrazení nebo úpravě fázového posunu pro různé CT přímo z monitoru. Chcete-li hodnotu upravit, zadejte novou hodnotu fázového posunu a klikněte na "Close" (Zavřít).

🗲 CT phase shift	×
CT Alternator Phase shift (*) 0.0	
CT Grid Phase shift (*) 0.0	
CT CrossCurrent Phase shift (°) 0.0	
Close	

5.1.7.11. Změna velikosti objektu

Velikost grafů, ukazatelů a P-Q diagramů lze změnit.

- Kliknutím pravým tlačítkem na plochu monitoru přepněte do režimu úpravy.
- Klikněte na možnost "Edit mode" (Režim úpravy).

• Přejděte doprostřed jedné strany nebo do rohu schématu: kurzor bude mít podobu oboustranné šipky.

• Klikněte, přidržte a přetáhněte na požadovanou velikost.

Režim úpravy ukončete stisknutím klávesy ESC nebo kliknutím pravým tlačítkem na plochumonitoru a zrušením výběru možnosti "Edit mode" (Režim úpravy).

5.1.7.12. Odstranit objekt

Postup odstranění objektu (jednotka zobrazení, graf, ukazatel atd.):

- Kliknutím pravým tlačítkem na plochu monitoru přepněte do režimu úpravy.
- Klikněte na možnost "Edit mode" (Režim úpravy).

- Zobrazí se mřížka znázorňující polohu různých objektů.
- Klikněte pravým tlačítkem na jednotku zobrazení, kterou chcete odstranit.
- Klikněte na tlačítko "Delete" (Odstranit).

	Delete
-	Edit mode
	Restore the initial configuration

Režim úpravy ukončete stisknutím klávesy ESC nebo kliknutím pravým tlačítkem na plochumonitoru a zrušením výběru možnosti "Edit mode" (Režim úpravy).

5.1.7.13. Uložení konfigurace monitoru

Konfiguraci monitoru lze uložit pro pozdější použití. Klikněte na tlačítko "Save" (Uložit). Otevře se okno. Zadejte název požadované konfigurace monitoru a zvolte možnost "Save" (Uložit).

5.1.7.14. Otevření konfigurace monitoru

Chcete-li načíst konfiguraci monitoru, klikněte na tlačítko "Open" (Otevřít). Otevře se okno. Vyberte požadovanou konfiguraci monitoru a zvolte možnost "Open" (Otevřít).

5.2. Vytvoření nové konfigurace

Regulátor D550 umožňuje použití dvou konfiguračních režimů: "rychlý" nebo "pokročilý".

Rychlá konfigurace: V tomto režimu je zařízení vybráno z databáze s uloženými továrními parametry alternátoru. Stránky přístupné v tomto režimu budou označeny symbolem

Pro přístup do tohoto režimu klikněte na možnost "New quick configuration" (Nová rychlá konfigurace).

Poznámka: Bude možné vytvořit rychlou konfiguraci a upřesnit parametry na poslední stránce konfigurace (stránka zesílení PID) pokračováním v konfiguraci v pokročilém režimu.

Pokročilá konfigurace: V tomto režimu je třeba nakonfigurovat veškeré provozní parametry zařízení. Stránky přístupné v tomto režimu budou označeny symbolem

Pro přístup do tohoto režimu klikněte na možnost "New advanced configuration" (Nová pokročilá konfigurace).

Software access level X
😫 User 🧏 Expert 📼 Development
The expert mode allows reading and modifying the data, it's possible to export them in the regulator.
Monitoring
Download data from regulator
New quick configuration
New customized configuration
Open a file
Change AVR 3 5 7

Tato konfigurace je tvořena několika stránkami pro konfiguraci celého provozu alternátoru. K procházení mezi stránkami použijte tlačítka "Next" (Další) a "Previous" (Předchozí) nebo klikněte na seznam stránek.

R

5.2.1. Popis "rychlé" konfigurace alternátoru

Na této stránce zvolte všechny následující položky:

- Velikost alternátoru kliknutím na příslušný obrázek
- Různé parametry:
 - Délka středu alternátoru
 - Typ buzení (AREP, SHUNT nebo PMG)
 - Frekvence a schéma zapojení obrázek na pravé straně obrazovky bude aktualizován dle voleb provedených uživatelem
 - Jmenovité napětí a tepelná třída
 - Poté klikněte na tlačítko "Next" (Další).

5.2.2. Popis "pokročilé" konfigurace alternátoru

• V rámci pokročilé konfigurace je třeba definovat veškerá strojní data.

Settings		
Generator description	▼ Next → ▶	
Application name LSA 42.3 S4 ARP 50.0Hz 400V D550 serial number Generator data Rated votage (V) Rated votage (V) Rated groupency (Hz) Rated apperant power (WA) Rated apperant power (WA) Rated current (A) Pole ratio between exciter and generator Excitation data	400.00 50.00 20.00 21.00 50.01 21.00 10.01	
Field Inductor resistance (Ohms) Shutdown field current (A) Rated field current (A)		

- Popis všech vlastností alternátoru: napětí (ve voltech), zdánlivý výkon (v kVA), frekvence (v Hz) a účiník.
- Pole: jmenovitý proud, jalový výkon a činný výkon jsou vypočítány automaticky.
- Poměr počtu pólů pro přesnou analýzu poruchy rotační diody je odvozen na základě analýzy harmonické složky proudu (počet pólů budiče dělený počtem pólů zařízení). Výchozí hodnota je 0 a je založena na úrovni zvlnění proudu pole.

Generator data		
Rated voltage (V)	400.00	
Rated frequency (Hz)	50.00	
Rated power factor	0.80	
Rated apperant power (kVA)	50.00	
Rated nominal power (kW)	40.00	
Rated reactive power (kVar)	30.00	
Rated current (A)	72.17	
Pole ratio between exciter and generator	0.0	Ħ

 Popis všech vlastností buzení pole: odpor pole budiče (v ohmech), vypínací proud pole(v ampérech) a jmenovitý proud pole (v ampérech).

Excitation data	
Field inductor resistance (Ohms)	0.00
Shutdown field current (A)	0.50
Rated field current (A)	1.00

• Klikněte na tlačítko "Next" (Další).

B P 5.2.3. Zapojení regulátoru

Toto zapojení musí být typické pro připojení mezi regulátorem a alternátorem. Během vývoje konfigurace se mění rovněž schéma zapojení v pravém okně: označení VT a/nebo CT, počet vodičů atd.

Poznámka: Standardně se zobrazuje měření napětí alternátoru a měření napětí distribuční sítě.

- VT pro měření napětí alternátoru:
 - Pokud jsou použity, zaškrtněte políčko. Poté lze nastavit různé parametry.
 - Uveďte napětí primárního a sekundárního vinutí (ve voltech).
 - V rozbalovací nabídce zvolte typ měření: fáze nulový vodič, fáze fáze, 3 fáze nebo 3 fáze a nulový vodič.

Generator PT	Generator vo	ltage connection	2: 3 Ph (U-V-W)	
Primary (V):	Secon 400	ndary (V): 110		

- CT pro měření proudu alternátoru:
 - Pokud jsou použity, zaškrtněte políčko. Objeví se následující okno:

Sensina	Sensi	ng IN
Primary (A)		Secondary (A)
	1.00	1.
Isolation CT		
Primary (A)		Secondary (A)
	1.00	1.0
Results		
Primary (A)		Secondary (A)
	1.00	1.0

V tomto okně je možné upravit proudy primárního a sekundárního vinutí (v ampérech) a také zvolit, zda se má měření provádět pro celé nebo pro část vinutí alternátoru:

Generator C1	r ——		
Sensing	Sensi	ng IN	-
Primary (A)	Sensi Sensi Sensi	ng IN ng IN/2 ng IN/3	0
Isolation CT	Sensi	ng IN/4	_
Primary (A)		Secondar	y (A)
	1.00		1.0
Results			
Primary (A)	1.00	Secondar	y (A) 1.0
ок	/	Cancel	0

- Poté, co se toto okno uzavře, je možné upravit různé parametry.
- Pomocí rozbalovací nabídky označte konfiguraci IT.

СТ	CT con	nection		0: GEN_UVW		
Generator CT Primary (A)		Secondary (A)		Phase shift (°)		ਂ
	1.0		1.0		0.0	
Main CT						
Primary (A)		Secondary (A)		Phase shift (°)		
	1.0		1.0		0.0	
Cross current CT Primary (A)		Secondary (A)		Phase shift (°)		
	1.0		1.0		0.0	1

Poznámka:

- Hodnotu posunu fáze je nutné nastavit během testů a uvedení do provozu. Slouží ke kompenzaci fázového rozdílu způsobeného použitím CT a VT.
- Pokud je přítomen izolační CT, hodnota sekundárního parametru by měla odpovídat sekundárnímu vinutí izolačního CT.
- CT pro měření proudu sběrnice: umístěn na fázi V
 - Je-li přítomen, zvolte režim 4. Poté lze nastavit různé parametry.
 - Uveďte proud primárního a sekundárního vinutí (v ampérech).
 - Tento vstup se také používá k detekci nadproudu v distribuční síti.

🔳 СТ	CT con	nection		4: GEN_U_M	AIN_V	
Generator CT		Consider (A)		Dhann ahift (?)		•
Primary (A)		Secondary (A)		Phase shift (*)		_
	1.0		1.0		0.0	
Main CT						
Primary (A)		Secondary (A)		Phase shift (°)		
	1.0		1.0		0.0	
Cross current CT	1.0		1.0		0.0	
Cross current CT Primary (A)	1.0	Secondary (A)	1.0	Phase shift (°)	0.0	_
Cross current CT Primary (A)	1.0	Secondary (A)	1.0	Phase shift (°)	0.0	±

- CT pro měření příčného proudu: umístěn na fázi V
 - Je-li přítomen, zvolte režim 3. Poté lze nastavit různé parametry.
 - Uveďte proud primárního a sekundárního vinutí (v ampérech).

CT CT connection			3: GEN_U_ICO	C	•
Generator CT Primary (A)	Secondary (A)	1.0	Phase shift (°)	0.0	
Main CT Primary (A)	Secondary (A)		Phase shift (°)		
Cross current CT	1.0	1.0		0.0	
Primary (A)	Secondary (A)	1.0	Phase shift (°)	0.0	1

• VT pro měření napětí sběrnice:

- Pokud jsou použity, zaškrtněte políčko. Poté lze nastavit různé parametry.
- Uveďte napětí primárního a sekundárního vinutí (ve voltech).

Bus voltage PT				
Primary (V):		Secondary (V):		_
	1		1	

- Step-up VT:
 - Tento VT odpovídá výkonovému transformátoru, který lze nalézt mezi alternátorem a sítí. Usnadňuje výpočet napětí při přizpůsobení síťového napětí, zejména pokud poměry mezi primárním a sekundárním v rámci různých měřicích VT nejsou identické.
 - "Primární" odpovídá zařízení (na výrobní straně) a sekundární je na straně sítě.

 Proto se při přizpůsobování síťového napětí referenční napětí poskytované regulátoru vypočítá pomocí následujícího vzorce:

Referenční napětí = Naměřená hodnota napětí sítě × $\frac{Primární vinutí step - up VT}{Sekundární vinutí step - up VT}$

- Pokud je použito, zaškrtněte políčko. Poté lze nastavit různé parametry.
- Zadejte napětí primárního a sekundárního vinutí (ve voltech)

Step up VT				
Primary (V):	Secondary (V):	Phase shift (°)	_	
250		1	0.0	

Poznámka: Úprava fázového posunu se používá k zohlednění zvláštních charakteristik zapojování tohoto step-up transformátoru.

• PT100 a CTP: Zvolte vstupy PT100 nebo CTP.	Temperature probe(s)		
	RTD1 Configuration 0: None	RTD4 Configuration 0: None	
	RTD2 Configuration 0: None	RTD5 Configuration 0: None	
	RTD3 Configuration 0: None		

5.2.4. Limit křivky způsobilosti

Poznámka: U rychlé konfigurace se parametry této křivky nastavují automaticky, když vyberete zařízení.

 Tento limit odpovídá limitu absorpce definovanému v křivce způsobilosti. Je vykreslena prostřednictvím 5 bodů, které definují oblasti. Doporučujeme používat mírně vyšší hodnoty kVAr než odpovídá bodu na křivce, aby alternátor mohl pracovat zcela bezpečně. Tyto body jsou definovány jako procento kVA. Příklad křivky způsobilosti:

Při pečlivém výběru bodů tvoří software podobný graf:

- Tento limit je aktivován v režimu regulace účiníku generátoru, regulace kVAr nebo režimu regulace účiníku sítě. Lze jej také aktivovat v režimu regulace napětí zaškrtnutím políčka "Enable under excitation limitation on voltage regulation mode" (Aktivovat limit nedostatečného buzení v režimu regulace napětí). V takovém případě je třeba definovat zesílení PID regulace.
- Jakmile pracovní bod dosáhne tohoto limitu, je budicí proud regulován tak, aby byl alternátor udržován v rozsahu definovaném křivkou způsobilosti.

5.2.5. Definice limitu přebuzení

Poznámka: U rychlé konfigurace se parametry této křivky nastavují automaticky, když vyberete zařízení.

- Tento limit je rozdělen do 3 různých částí s využitím 3 bodů, které definují jednotlivé oblasti. Tyto body jsou určeny na základě možností zařízení. Běžné hodnoty nastavení jsou:
 - 2,5násobek jmenovitého budicího proudu po dobu 10 sekund pro zkrat statoru
 - 1,5násobek jmenovitého budicího proudu po dobu 10 sekund až maximálně 120 sekund
 - 1,1násobek jmenovitého budicího proudu po dobu 10 sekund až maximálně 3600 sekund.
- Jakmile budicí proud překročí hodnotu jmenovitého proudu, je spuštěno počitadlo. Oblast S1 "naměřená hodnota budicího proudu x čas" (níže znázorněná červeně) je poté srovnána s oblastí "maximální hodnota budicího proudu x čas" (níže znázorněnou modře). Pokud se S1 rovná S2, limit je aktivní a regulátor D550 omezí budicí proud na 99 % jmenovitéhoproudu (což v tomto případě vede k přerušení probíhajícího režimu regulace).

 Pokud je limit aktivní, je z důvodu ochrany zařízení možné použít vyšší hodnotu proudu než 99 % jmenovitého proudu až po 24 hodinách.

5.2.6. Definice limitu proudu statoru

Poznámka: Tento limit není u rychlé konfigurace povolen.

- V zásadě je tento limit totožný s horním limitem budicího proudu.
- Lze jej aktivovat pouze tehdy, pokud probíhá alespoň jedno měření proudu statoru prostřednictvím CT.

- Je rozdělen do 3 různých částí s využitím 3 bodů, které definují jednotlivé oblasti. Tyto body jsou určeny na základě možností zařízení. Běžné hodnoty nastavení jsou:
 - 3násobek jmenovitého proudu statoru po dobu 10 sekund pro zkrat statoru
 - 1,5násobek jmenovitého proudu statoru po dobu 120 sekund
 - 1,1násobek jmenovitého proudu statoru po dobu 3600 sekund
- Jakmile proud statoru překročí hodnotu jmenovitého proudu, je spuštěno počitadlo. Oblast S1 "naměřená hodnota proudu statoru x čas" (níže znázorněná červeně) je poté srovnána s oblastí "maximální hodnota proudu statoru x čas" (níže znázorněnou modře). Pokud se oblast S1 rovná S2, limit je aktivní a regulátor D550 omezí proud statoru na 99 % jmenovitého proudu (což v tomto případě vede k tomu, že referenční napětí nebude sledováno).

 Rovněž je možné trvale omezit hodnotu proudu statoru zaškrtnutím políčka "Permanent alternator current limit" (Stálý limit proudu alternátoru). Ve výše uvedeném příkladu nesmí proud statoru překročit 320 % jmenovitého proudu. Lze také nastavit zesílení regulační křivky. Tento limit je užitečný pro spouštění motoru, aby byl omezen dodaný proud a zajištěno postupné zvyšování otáček:

Když je jistič mezi motorem a generátorem uzavřen, regulátor D550 pokračuje v regulaci napětí, dokud měřený proud statoru nedosáhne mezní hodnoty. V tomto případě D550 reguluje proud statoru. Když motor dosáhne jmenovité hodnoty otáček, proud přirozeně poklesne a napětí se zvýší. Regulátor D550 se poté vrátí do režimu regulace napětí.

Instalace a údržba

Digitální regulátor napětí D550

Pro prevenci a detekci možného špatného spuštění motoru lze na stránce možností ochrany nastavit prodlevu v rozmezí 1 až 60 s (ochrana "spouštění motoru"). Pokud napětí není po uplynutí prodlevy na nastavené hodnotě napětí, regulátor poté odpoví, stejně jako u všech ostatních chyb, dle zvolené akce:

- Žádná akce
- Zastavení regulace
- Režim regulace budicího proudu při hodnotě vypnutí
- Režim regulace budicího proudu při hodnotě před chybou

Když dojde ke spojení jističe motoru před buzením, má toto omezení prioritu a doba náběhu není zohledněna.

Poznámka: Během spouštění motoru musí být deaktivovány všechny ostatní limity, chyby a možnosti ochrany (podpětí, přepětí, nízké otáčky, podbuzení, přebuzení).

5.2.7. <u>Definice ochranných funkcí</u>

Existují 3 typy ochrany:

- Chyby generátoru
- Chyby regulátoru
- Prahové hodnoty alarmů a vypnutí pro každý snímač teploty

Všechny ochranné prvky využívají stejnou architekturu:

- Aktivace ochrany
- Prahová hodnota
- Prodleva
- Akce pro potvrzení (nebo nepotvrzení), že prodleva skončila. Tato akce je zvolena v seznamu:
 - Žádná akce: Regulace bude pokračovat.
 - Regulace je zastavena: buzení je následně ukončeno.
 - Regulace v režimu budicího proudu při hodnotě vypnutí.
 - Regulace v režimu budicího proudu při hodnotě budicího proudu před chybou: bez rázu při regulaci.

Každý ochranný prvek obsahuje možnost automatického resetování:

- Pokud je vybrána tato možnost: když dojde k odstranění chyby, vrátí se regulace doautomatického režimu (režimu napětí nebo režimu účiníku).
- Pokud tato možnost není zvolena, bude zachována zvolená akce.

Níže je uveden příklad pro přepětí:

Under voltage fa	ault detected	
_	Undervoltage % setpoint (%)	85.00 Auto-Reset
Activation	Undervoltage delay (s)	1.00 Action after fault 0: No action

Při aktivaci této chyby se změní barva pozadí na světle zelenou.

Under voltage fault detected					
	Undervoltage % setpoint (%)	85.00 📃 Auto-Reset			
Acti	ivation Undervoltage delay (s)	1.00 Action after fault 0: No action			

Electric Power Generation

Digitální regulátor napětí D550

- Podpětí a přepětí: Tyto možnosti ochrany lze aktivovat zaškrtnutím políčka "Activation" (Aktivace) a definováním prahové hodnoty (v procentech jmenovité hodnoty napětí) a prodlevy před aktivací ochrany. V následujícím případě:
 - Chyba podpětí je aktivována, pokud je napětí generátoru nižší než 85 % jmenovitéhonapětí alespoň po dobu 1 sekundy. Tato chyba je aktivní pouze tehdy, pokud je aktivována regulace a bylo dosaženo náběhu měkkého startu.
 - Chyba přepětí je aktivní, pokud je napětí generátoru vyšší než 115 % jmenovitéhonapětí alespoň po dobu 1 sekundy.

Under voltage fail	ult detected Undervoltage % setpoint (%) Undervoltage delay (s)	85.00 Auto-Reset 1.00 Action after fault 0:	No action
Over voltage faul	It detected Overvoltage % setpoint (%) Overvoltage delay (s)	115.00 Auto-Reset 1.00 Action after fault 0:	No action

- Příliš nízká nebo příliš vysoká frekvence: Tyto možnosti ochrany lze aktivovat zaškrtnutím políčka "Activation" (Aktivace) a definováním hodnoty frekvence a prodlevy před aktivací ochrany. V následujícím případě:
 - Chyba příliš nízké frekvence je aktivována, pokud je frekvence generátoru nižší než47 Hz alespoň po dobu 1 sekundy. Tato chyba je aktivní pouze tehdy, pokud je aktivována regulace.
 - Chyba příliš vysoké frekvence je aktivována, pokud je frekvence generátoru vyšší než53 Hz alespoň po dobu 1 sekundy.

Under frequency	fault detected Underfrequency setpoint (Hz)	47.00 Auto-Reset	
	Underfrequency delay (s)	1.00 Action after fault	0: No action
- Over frequency f	fault detected		
Activation	Overfrequency setpoint (Hz)	53.00 Auto-Reset	
-	Overfrequency delay (s)	1.00 Action after fault	0: No action

- Chyba diody: Tyto možnosti ochrany lze aktivovat zaškrtnutím políčka "Activation" (Aktivace) a definováním procentního podílu harmonické složky budicího proudu a prodlevy před aktivací ochrany.
 - Pokud je znám poměr pólů (počet pólů budiče dělený počtem pólů generátoru), procento harmonické složky řízené regulátorem je součtem dvou harmonických složek blíže k poměru. Například u budiče se 16 póly a generátoru se 6 póly je poměr pólů 2,66, takže se sčítají procenta harmonické složky 2 a 3.
 - Jestliže je poměr pólů neznámý, procento harmonických složek řízených regulátorem je součtem všech harmonických složek.

V následujícím případě:

- Chyba otevřené diody je aktivována, pokud je procento harmonické složky budicího proudu vyšší než 5 % po dobu alespoň 1 sekundy. Tato chyba je aktivní pouze tehdy, pokud je aktivována regulace.
- Chyba zkrat diody je aktivní, pokud je procento harmonické složky budicího proudu vyšší než 10 % po dobu alespoň 1 sekundy.

Electric Power Generation	Instalace a údržba	5744 cz - 2024.01 / e

Open diode fault	t detected Open diode percentage of field current (%) Open diode delay (s)	5.00 Auto-Rese	ault 0: No action	
Shorted diode fai	ult detected Shorted diode percentage of field current (%)	10.00 Auto-Rese	et	

 Chyba spuštění motoru: Tuto možnost ochrany lze aktivovat zaškrtnutím políčka "Activation" (Aktivace) a definováním prodlevy. V následujícím případě je chyba aktivována, pokud je napětí generátoru nižší než nastavená hodnota napětí, pokud uběhla 30sekundová prodleva. Více informací naleznete v části "Limit proudu statoru".

Motor start fault detected		
Motor start delay (s)	30.0 🗌 Auto-Reset	
Activation	Action after fault	0: No action

 Reverzace činného výkonu: toto ochranné zařízení lze aktivovat zaškrtnutím políčka "Activation" (Aktivace) a definováním prahové hodnoty činného výkonu (jako procento jmenovitého činného výkonu) a prodlevy před aktivací ochranného zařízení.

Poznámka: V tomto případě je výkon záporný, to znamená, že alternátor je v tom případě v režimu "motoru".

Reverse active p	oower fault detected		
	Reverse active power % setpoint (-) (%)	-10.00 Auto-Reset	
Activation	Reverse active power delay (s)	1.00 Action after fault	0: No action

 Reverzace jalového výkonu: toto ochranné zařízení lze aktivovat zaškrtnutím políčka "Activation" (Aktivace) a definováním prahové hodnoty jalového výkonu (jako procento jmenovitého jalového výkonu) a prodlevy před aktivací ochranného zařízení.

Poznámka: V tomto případě je jalový výkon záporný.

Reverse reactive	e power fault detected			
— • • • •	Reverse reactive power % setpoint (-) (%)	-10.00	Auto-Reset	
Activation	Reverse reactive power delay (s)	1.00	Action after fault	0: No action

Ztráta snímání: tuto možnost ochrany lze aktivovat zaškrtnutím políčka "Activation" (Aktivace) a definováním prahové hodnoty napětí v procentech nastavené hodnoty napětí generátoru a prodlevy před aktivací ochranného zařízení. V následujícím případě je sepnutí aktivováno, pokud je napětí generátoru nižší než 20 % nastavené hodnoty napětí po uplynutí 1 sekundy. Tato funkce je deaktivována během zkratu, měkkého startu a když je napětí regulováno podle sklonu funkce U/F.

Loss of sensing	fault detected				
	Lost of sensing % (%)	20.00	Auto-Reset		
Activation	Lost of sensing delay (s)	1.00	Action after fault	0: No action	

 Nerovnováha napětí: tuto možnost ochrany lze aktivovat zaškrtnutím políčka "Activation" (Aktivace) a definováním procentuální hodnoty nerovnováhy napětí a prodlevy před aktivací ochranného zařízení. Výpočet nerovnováhy napětí se provádí podle normy NEMA: Tato funkce je deaktivována během měkkého startu.

 $Procento nerovnováhy = \frac{Maximální napětí generátoru}{Průměrné napětí generátoru} \times 100$

V následujícím případě je chyba aktivována, pokud je procentuální hodnota nerovnováhyalespoň 20 % po uplynutí 1 sekundy.

Unbalan	nced voltage fault detected		
	Unbalanced voltage % (%)	20.00 Auto-Reset	
Acti	ivation Unbalanced voltage delay (s)	1.00 Action after fault 0: No action	

Zkrat: tuto možnost ochrany lze aktivovat zaškrtnutím políčka "Activation" (Aktivace) a definováním minimální prahové hodnoty proudu statoru v procentech jmenovitého proudu generátoru a prodlevy před aktivací ochranného zařízení. V následujícím případě je sepnutí aktivováno, pokud je naměřená hodnota proudu generátoru vyšší než 200 % jmenovitého proudu statoru po uplynutí 10 sekund.

Short circuit faul	It detected		
	Short circuit % (%)	200 🗌 Auto-Reset	
Activation	Short circuit delay (s)	10.00 Action after fault	0: No action

 Nerovnováha proudu: tuto možnost ochrany lze aktivovat zaškrtnutím políčka "Activation" (Aktivace) a definováním procentuální hodnoty nerovnováhy proudu a prodlevy před aktivací ochranného zařízení. Výpočet nerovnováhy proudu se provádí s použitím stejného vzorce jako u nerovnováhy napětí.

Tato funkce je deaktivována během měkkého startu.

$$Procento nerovnováhy = \frac{Maximální proud generátoru}{Průměrný proud generátoru} \times 100$$

V následujícím případě je chyba aktivována, pokud je procentuální hodnota nerovnováhyalespoň 20 % po uplynutí 1 sekundy.

- Unbalanced cun	rent fault detected		
	Unbalanced current % (%)	20.00 🔲 Auto-Reset	
Activation	Unbalanced current delay (s)	1.00 Action after fault 0:	No action

 Chyba napájení: tuto možnost ochrany lze aktivovat zaškrtnutím políčka "Activation" (Aktivace). Je výsledkem kontroly napájení regulátoru D550. V následujícím případě je chyba aktivní, pokud je napájecí napětí pod 10 V po dobu 10 s nebo více.

Battery under vo	Itage fault detected		
	Battery under voltage fault (V)	10.0 📃 Auto-Reset	
Activation	Battery under voltage fault delay (s)	10.0 Action after fault 0: No action	

 Chyba IGBT: tuto možnost ochrany lze aktivovat zaškrtnutím políčka "Activation" (Aktivace). Chyba je aktivována, pokud je detekována chyba koordinace mezi příkazem a akcí výkonových tranzistorů. Pokud není přijato žádné opatření, regulátor bude i nadále provádět regulaci na nastavenou hodnotu, ale se sníženou přesností. Je nezbytné regulátor D550 urychleně vyměnit.

Activation Action affiliation	er fault	0: No action

- Klikněte na tlačítko "Next" (Další).
- Detekce přetížení přemostění napájení: tuto možnost ochrany lze aktivovat zaškrtnutím políčka "Activation" (Aktivace) a definováním procentuální hodnoty nerovnováhy proudu a prodlevy před aktivací ochranného zařízení. V následujícím případě je sepnutí aktivováno, pokud je naměřená hodnota budicího proudu vyšší než 1 A po uplynutí 30 sekund.

Power bridge over	erload fault detected		
	Excitation current for power bridge overload fault (A)	1.0 📃 Auto-Reset	
Activation	Power bridge overload fault delay (s)	30.0 Action after fault	0: No action

 Teplotní ochrana: tyto možnosti ochrany lze aktivovat zaškrtnutím políčka "Activation" (Aktivace) a definováním prahových hodnot vypnutí a alarmu. Následující snímky obrazovky znázorňují pouze RTD 1 (stejné pro RTD 1 až 5).

- PT100 1 fault			
Activation	PT100 1 alarm temperature (°C)	155 Auto-Reset	
	PT100 1 fault temperature (°C)	165 Action after fault 0: No action	

Na poslední stránce možností ochrany mohou být definovány skupiny chyb: všechny chyby lze poté sloučit dohromady a aktivovat tak jeden nebo více signálů (například digitální výstup) a vytvořit tak syntézu několika chyb. Jestliže je aktivována jedna z těchto chyb, je aktivována celá skupina. Tato informace může být cílem pro jeden výstup nebo může být použita v logických funkcích. V následujícím příkladu odpovídá skupina 1 chybám otáček, skupina 2 chybám souvisejícím s teplotou, skupina 3 chybám teplotního alarmu a skupina 4 chybám nerovnováhy napětí a chybám napájecího napětí.

Protections	Next 🔸 🕨	1	Fault reset	
Machine fault Regulator fault Power bridge Temperature protections Faults group				
Fault	Group 1	Group 2	Group 3	Group 4
Overvoltage fault class				
Undervoltage fault class				
Overfrequency fault class				
Underfrequency fault class				
Open diode fault class				
Shorted diode fault class				
Reverse active power fault class				
Reverse reactive power fault class				
PT100 1 Alarm (Over temp) fault class				
PT100 1 fault class				
PT100 2 Alarm (Over temp) fault class				
PT100 2 fault class				
PT100 3 Alarm (Over temp) fault class				
PT100 3 fault class				
PT100 4 Alarm (Over temp) fault class				
PT100 4 fault class				
PT100 5 Alarm (Over temp) fault class				
PT100 5 fault class				
PTC 1 fault class				
PTC 2 fault class				
PTC 3 fault class				
PTC 4 fault class				
PTC 5 fault class				
Loss of sensing fault class				
Unbalance voltage fault class				
Unbalance current fault class				
Short circuit fault class				
IGBT fault class				
Motor start fault class				
Power bridge overload fault class				
Battery under voltage fault class				
CAN under voltage fault class				

Klikněte na tlačítko "Next" (Další).

RP

5.2.8.1. Start

 Doba náběhu odpovídá času potřebnému k dosažení referenční hodnoty napětí zařízení (nebo referenční hodnoty budicího proudu).

• Pokud má být start okamžitý, zadejte dobu náběhu "0".

Regulation m	ode		▼ ▼ Previous	Next 🔶 🕨	
up Voltage Volt Matching	Generator Power Factor	kVAr Grid Power Factor	Field Current		
irt enabled by					
ways enabled			*		
			Catagist		
			Setpoint		
Soft-start duration (s)	15.0				
Soft-start duration (s) Start on threshold	15.0				
Soft-start duration (s) Start on threshold Start on Threshold (SoT) I	15.0 Mode Active		Starting Excitation 15s		Time
Soft-start duration (s) Start on threshold Start on Threshold (SoT) I Voltage Threshold (V)	15.0 Mode Active		Starting Excitation 15s		Time
Soft-start duration (s) Start on threshold Start on Threshold (SoT) I Voltage Threshold (V) Initial PWM SoT (%)	15.0 Mode Active		Starting Excitation 15s		Time
Soft-start duration (s) Start on threshold Start on Threshold (SoT) I Voltage Threshold (V) Initial PWM SoT (%) Minimum frequency threshold t	15.0 Mode Active	(Hz) 6.0	Starting Excitation 15s		Time
Soft-start duration (s) Start on threshold Start on Threshold (SoT) I Voltage Threshold (V) Initial PWM SoT (%) Minimum frequency threshold t Minimum Vbus voltage threshol	15.0 Mode Active 0.0 0.0 2 o reset the threshold start i id to reset the threshold start	(Hz) 6.0 art (V) 20.0	Starting Excitation 15s		Time

- Režim startu buzení pole zvolte z rozbalovacího seznamu. Může to být:
 - Řízeno digitálním vstupem (DI1 až DI8).
 - Neřízeno přímo, ale například na základě logického členu.
 - Povoleno vždy volba "Always active" (Vždy aktivní) V tomto případě je buzení pole vždy aktivováno, jakmile dojde ke spuštění produktu. To nabízí dva možné scénáře:
 - **Režim spuštění při prahové hodnotě není aktivní**: Náběh bude aktivován, jakmile se alternátor začne otáčet, a referenční hodnota bude korigována podle parametru sklonu nízké rychlosti nastaveného v režimu regulace napětí (viz další část).
 - Režim spuštění při prahové hodnotě je aktivní. Označením políčka "Start on Threshold (SoT) Mode Active" (Režim spuštění při prahové hodnotě aktivní) tento režim povolte. Slouží ke spuštění náběhu bez zohlednění rychlosti alternátoru s použitím úrovně napětí na svorkách X1, X2, Z1 a Z2. Tento režim pracuje ve dvou fázích:
 - Řízení otevření výkonového tranzistoru je zpočátku udržováno na pevné hodnotě ("Initial PWM SoT (%)" (PWM při spuštění v %)), dokud napětí alternátoru nedosáhne definované hodnoty ("Voltage Threshold (V)" (Prahová hodnota napětí ve V)).
 - Jakmile napětí zařízení dosáhne této prahové hodnoty, aktivuje se regulace napětí.

- Pro zastavení buzení počínaje prahovou hodnotou musí být splněny následující 3 podmínky:
 - Frekvence nižší než pevná frekvence
 - Napětí DC sběrnice (nepřetržité zobrazování napětí přítomného na svorkách X1, X2, Z1 a Z2) nižší než pevná úroveň napětí
 - Prodleva po ověření předchozích dvou podmínek
- V následujícím příkladu pro alternátor o napětí 400 V:

Start on threshold		
Start on Threshold (SoT) Mode	Active	
voitage Inreshold (V)	0.0	
inuai PWW 301 (70)	0.0	
- Re-initialization threshold start cond	litions:	
The frequency must be lower than		6.0 Hz
Vbus voltage must be lower than		20.0 V
Waiting delay after previous conditio	ns enabled	0.0 s

• Klikněte na tlačítko "Next" (Další).

5.2.8.2. <u>Regulace napětí</u>

 Tato regulace musí být vždy aktivní, takže v rozbalovacím seznamu zvolte možnost "Always active" (Vždy aktivní).

Start-up	Voltage	Volt Mate
Regula Alway	tion enable /s enabled	d by

- **Referenční bod** je určen buď pevnou hodnotou na kartě "Internal setpoint" (Interní hodnota nastavení), nebo analogovým vstupem, jehož zdroj, typ a rozsah musí být definovány v kartě "Setpoint from analog input" (Hodnota nastavení z analogového vstupu).
- Jestliže je zvolena možnost "Internal setpoint" (Interní hodnota nastavení), vyplňte referenční hodnotu napětí. Tuto hodnotu lze také upravit prostřednictvím sběrnice fieldbus.

	Internal setpoint
	Voltage reference (V)
1	400.0
	400.0

 Jestliže je zvolena možnost "Analog input" (Analogový vstup), aktivuje se část "Setpoint from analog input" (Hodnota nastavení z analogového vstupu). Označte políčko požadovaného analogového vstupu, určete jeho režim (+/-10 V, 0/10 V, 4–20 mA, potenciometr) a hodnoty napětí při 0 % a 100 %.⁹

	🏉 Setpoint from	analog	input		^
	AIN1	AIN2	AIN3	AIN4	
	Analog Input co	nfiguration			
	Analog inpu	t 4-20mA			2
	0% value		100% v	alue	
	380.00	V		400.00	V
Kurzor —	Simula	ition			
		\rightarrow			

Poznámka: Pohybem kurzoru můžete zobrazit hodnoty získané na křivkách napětí a nízké frekvence zobrazených vpravo.

 Limity této referenční hodnoty musí být pevné v závislosti na možnostech zařízení (v následujícím příkladu je minimální referenční hodnota napětí 0 % ze 400 V a maximální referenční hodnota napětí je 100 % ze 400 V).

⁹ Napěťové svorky lze prohodit: minimální napětí pro 100 % analogového vstupu a maximální napětí pro 0 % analogového vstupu.

• Pokud je nastavena pevná referenční hodnota, lze referenční hodnotu upravit dvěma vstupy nahoru a dolů, jeden impuls odpovídající vystoupení o jeden "krok" nahoru nebo sestoupení o jeden "krok" dolů. Oba vstupy, hodnota kroku a prodleva, musí být pevně stanoveny a k tomuto nastavení lze získat přístup nastavením voliče na "Active" (Aktivní).

🖉 Setpoint adjustment		^
Not ActiveActive		
Step +/- U (V)	1.0)
Input -: None	Input +: None	
Repeat de	ay (ms) 300]

Poznámka: Vstupy "+" a "-" jsou stejné pro všechny režimy regulace, ale mají vliv pouze na ty režimy regulace, ve kterých byly aktivovány.

- **Příliš nízká frekvence:** Tato dvě pole slouží k nastavení poklesu napětí jako funkce otáček alternátoru.
 - Hodnota bodu zlomu: Typické hodnoty jsou 48 Hz pro alternátor nastavený na 50 Hz, 57 Hz pro alternátor se jmenovitou frekvencí 60 Hz a 380 Hz pro alternátor nastavený na 400 Hz.
 - Sklon: Nastavitelný v rozsahu 0,5 až 3. Čím vyšší je hodnota sklonu, tím větší bude pokles napětí, pokud klesnou otáčky hnacího motoru.

Underspeed	
Knee (Hz)	48.0 Slope (V/Hz) 1.0

• Vykreslení křivky se mění jako funkce těchto dvou hodnot.

Kvadraturní úbytek: Zaškrtněte toto políčko, chcete-li povolit tuto funkci, a zadejte procentuální pokles napětí v rozmezí -20 % až +20 % (pozor – záporná hodnota znamená zvýšení napětí). Tato funkce se používá zejména v případě alternátorů ve společném paralelním provozu. Výchozí nastavení je 3 %.

Reactive droop compensation (%)	3.0
Vykreslení křivky kvadraturního úbytku se mění jako funkce referenční hodnoty.

Poznámka: Pokud je aktivován kvadraturní úbytek, již nelze použít kompenzaci zatížení ani funkci příčného proudu.

- Kompenzace zatížení: Chcete-li povolit tuto funkci, zaškrtněte toto políčko a zadejte procentuální změnu referenční hodnoty napětí v rozmezí -20 % až +20 % Tato funkce slouží v závislosti na kVA dodávaném do zařízení zejména k následujícím účelům:
 - Zvýšení referenční hodnoty napětí (v rozmezí 1 až 20 %) v případě mimořádně dlouhých distribučních vedení.
 - Snížení referenční hodnoty napětí (v rozmezí -20 % až -1 %) pro vyrovnání zatížení u zařízení připojených k usměrňovači (DC sběrnice).

Voltage line drop compensation (%)	3.0
voltage line drop compensation (%)	3.0

Vykreslení křivky kompenzace se mění jako funkce nastavené hodnoty napětí.

Poznámka: Pokud je aktivována kompenzace zatížení, již nelze použít kvadraturní úbytek ani funkci příčného proudu.

 Příčný proud: Zaškrtněte toto políčko, chcete-li povolit tuto funkci, a zadejte procentuální korekci napětí jako funkci zbytkové hodnoty kVAr. Systém automaticky koriguje napětí (dočasně), aby trvale zrušil rozdíl kVAr mezi zařízeními, avšak bez snížení regulačního bodu. Tato funkce vyžaduje speciální zapojení.

Cross Current (% Voltage setpoint)	3.0	
------------------------------------	-----	--

Poznámka: Pokud je aktivována funkce příčného proudu, již nelze použít kvadraturní úbytek ani kompenzaci zatížení.

- Použití této funkce je možné pouze v případě, že je na regulátoru D550 připojen CT příčného proudu na vstup V.
- LAM: modul přijatelnosti zatížení. Tato funkce slouží k vylepšení odezvy generátoru a snížení nastavené hodnoty napětí při rázovém zatížení.
 Když je naměřená frekvence generátoru pod spodním limitem nízkých otáček definovaným v konfiguraci (např. 48 Hz nebo 57 Hz), nastavená hodnota napětí se sníží na definovanou

Engine help	
Soft voltage recovery (s/%)	0.10
Smart L.A.M. (%)	L.A.M. (%)
	L.A.M. (%) 10.0
	L.A.M. duration (ms) 1,000

• Pokud frekvence nadále klesá, je napětí regulováno podle zákona U/f.

hodnotu (v následujícím příkladu 10 % pod jmenovitým napětím).

- Měkké obnovení napětí umožňuje obnovení rychlosti generátorové soustavy: hodnota je uváděnav sekundách na procento jmenovitého napětí (s/%). Například výše uvedené nastavení znamená, že v případě poklesu frekvence o 10 % bude postupný čas nárůstu 1 sekunda (tj. 0,100 s/% * 10 %). Upozorňujeme, že pokud je sklon postupného nárůstu větší než dle zákona U/f, napětí se zvýší podle tohoto zákona.
- Prodleva stabilizace frekvence odpovídá době čekání před postupným zvýšením nastavené hodnoty napětí (podle zvyšování frekvence).
- Na následujícím obrázku jsou znázorněny detaily použití funkce LAM.

- Smart LAM: tato funkce má stejnou roli jako klasická funkce LAM popsaná výše. Rozdíl spočívá ve skutečnosti, že procentuální hodnota poklesu napětí není pevně dána uživatelem, ale automaticky se přizpůsobuje úrovni dopadu zatížení. Pro každý dopad zatížení platí:
 - Řídicí jednotka měří provozní frekvenci a nepřetržitě vypočítává odvozenou hodnotu.
 - Z této odvozené hodnoty je na základě parametrů konfigurovaných uživatelem vypočítán koeficient atenuace (K) napětí. V následujícím příkladu bude pokles aplikovaného napětí pro odchvlku frekvence 10 Hz/s odpovídat 10 % imenovitého napětí.

Engine help				
Soft voltage recover	y (s/%)		0.10 ?	
Smart L.A.M. (%)			L.A.M. (%)	?
L.A.M. 10.0 % for	10.0	Hz/s frequency drop speed.		
L.A.M. duration (ms)	1,000			

Atenuace napětí pro každý dopad zatížení je určena pomocí vzorce $\Delta U = K \times Ur$, kde Ur jejmenovité napětí alternátoru.

Prodleva stabilizace frekvence odpovídá době čekání před postupným zvýšením nastavené hodnoty napětí (podle zvyšování frekvence).

Klikněte na tlačítko "Next" (Další).

🖪 🕑 5.2.8.3. Obv<u>od pro přizpůsobení napětí</u>

- Pro připojení alternátoru k síti musí být napětí sítě a napětí alternátoru velmi blízké (rozdíl mezi oběma naměřenými hodnotami menší než 5 %). Funkce obvodu pro přizpůsobení napětí se používá k měření okamžitého síťového napětí jako referenční hodnoty napětí alternátoru.¹⁰
- Aby byl aktivován obvod pro přizpůsobení napětí, zvolte v rozevíracím seznamu typ aktivace. Může to být:
 - Řízeno digitálním vstupem (DI1 až DI8).
 - Povoleno vždy volba "Always active" (Vždy aktivní) V takovém případě je obvod pro přizpůsobení napětí vždy povolen, a to v závislosti na pořadí priorit regulace.
 - Jestliže je zvolena možnost "None" (Žádný), obvod pro přizpůsobení napětí není povolen • nikdy, nebo je povolen logickým členem.

Start-up	Voltage	Volt Matching
Regula DI3	tion enable	d by

Klikněte na tlačítko "Next" (Další).

¹⁰ Tato funkce vyžaduje alespoň jeden nebo dva transformátory pro měření napětí sítě.

5.2.8.4. <u>Regulace účiníku generátoru</u>

 Tato regulace musí být aktivována, jakmile je zařízení připojeno síti (datová položka zapnutí stykače sítě) a deaktivována, jakmile je zařízení od sítě odpojeno. Zdroj stykače pro připojení k síti musí být uveden ve spodní části stránky:

DI4	

- Pro zařízení připojená k síti jej lze zvolit s regulací kVAr a regulací účiníku v jednom bodě sítě.
- Tato funkce se používá k regulaci účiníku na svorkách zařízení. Za tímto účelem musí být zapojeno měření proudu alternátoru (1 nebo 3 proudové transformátory).
- Tato regulace je ve výchozím nastavení aktivována ihned po zapnutí jističe sítě. Ostatní regulační režimy – kVAr nebo účiník v bodě sítě mají u této regulace přednost.
- **Referenční bod** je určen buď pevnou hodnotou na kartě "Internal setpoint" (Interní hodnota nastavení), nebo analogovým vstupem, jehož zdroj, typ a rozsah musí být nastaveny v kartě "Setpoint from analog input" (Hodnota nastavení z analogového vstupu).
- Jestliže je zvolena možnost "Internal setpoint" (Interní hodnota nastavení), vyplňte referenční hodnotu napětí. Tuto hodnotu lze také upravit prostřednictvím sběrnice fieldbus.

<u> </u>
_
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Jestliže je zvolena možnost "Analog input" (Analogový vstup), aktivuje se část "Reference via analog input" (Reference prostřednictvím analogového vstupu). Označte políčko požadovaného analogového vstupu, určete jeho režim (+/-10 V, 0/10 V, 4–20 mA, potenciometr) a hodnoty účiníku při 0 % a 100 %.¹¹

	🏉 Setpoint from	analog input	^
	AIN1	AIN2 AIN3	AIN4
	Analog Input cont Analog input	figuration 4-20mA	
	0% value 1.0	1009	% value 0.80
Kurzor	Simulat		

Poznámka: Posunutím kurzoru je možné na grafu způsobilost umístěném na pravé straně stránky zobrazit referenční hodnotu účiníku (modrá čára).

¹¹ Reference účiníku lze prohodit a limity obrátit: minimální účiník pro 100 % analogového vstupu a maximální účiník pro 0 % analogového vstupu.

• Pokud je nastavena pevná referenční hodnota, lze referenční hodnotu upravit dvěma vstupy (nahoru a dolů), jeden impuls odpovídající vystoupení o jeden "krok" nahoru nebo sestoupení o jeden "krok" dolů. Oba vstupy, hodnota kroku a prodleva, musí být pevně stanoveny a toto nastavení je povoleno nastavením voliče na "Active" (Aktivní).

🥏 Setpoint adjustment		^
Not ActiveActive		
Step +/- PF	0.000	
Input -: DI6	Input +: DI7	
Repeat delay	(ms) 300	

Poznámka: Vstupy "+" a "-" jsou stejné pro všechny režimy regulace.

 Limity této referenční hodnoty musí být pevné v závislosti na možnostech zařízení (v následujícím příkladu je referenční hodnota účiníku pevně určena v rozmezí 1 až 0,8 (dodávání jalového výkonu z pohledu generátoru)).

Tyto referenční limity definují světle zelenou plochu na grafu způsobilosti, ve kterém se může referenční hodnota lišit.

5.2.8.5. <u>Regulace kVAr generátoru</u>

 Tato regulace musí být aktivována, jakmile je zařízení připojeno k síti (datová položka "zapnutí stykače sítě") a deaktivována, jakmile je zařízení od sítě odpojeno. Zdroj stykače pro připojení k síti musí být uveden ve spodní části stránky:

DM	
DI4	-

- Pro zařízení připojená k síti jsou dalšími volbami regulace účiníku generátoru nebo regulace účiníku v jednom bodě sítě (viz kroky 10 a 12).
- Tato regulace se používá k regulaci kVAr na svorkách zařízení. Za tímto účelem musí být zapojeno měření proudu alternátoru (1 nebo 3 proudové transformátory).
- Aby byla aktivována regulace kVAr, zvolte v rozevíracím seznamu typ aktivace. Může to být:
 - Řízeno digitálním vstupem (DI1 až DI8).
 - Povoleno vždy volba "Always active" (Vždy aktivní) V takovém případě je regulace kVAr vždy aktivní, a to v závislosti na pořadí priorit regulace.
 - Jestliže je zvolena možnost "None" (Žádný), regulace kVAr není povolena nikdy, nebo je povolena logickým členem.

Start-up	Voltage	Volt Matching	Generator Power Factor	kVAr
Regulat None	ion enable	d by		

- **Počáteční referenční bod** je určen buď pevnou hodnotou na kartě "Internal setpoint" (Interní hodnota nastavení), nebo analogovým vstupem, jehož zdroj, typ a rozsah musí být nastaveny v kartě "Setpoint from analog input" (Hodnota nastavení z analogového vstupu).
- Jestliže je zvolena možnost "Internal setpoint" (Interní hodnota nastavení), vyplňte referenční hodnotu napětí. Tuto hodnotu lze také upravit prostřednictvím sběrnice fieldbus.

🖉 Internal setpoint	^
Generator kVAr reference	
0	

Jestliže je zvolena možnost "Analog input" (Analogový vstup), aktivuje se část "Reference via analog input" (Reference prostřednictvím analogového vstupu). Označte políčko požadovaného analogového vstupu, určete jeho režim (+/-10 V, 0/10 V, 4–20 mA, potenciometr) a hodnoty kVAr při 0 % a 100 %.¹²

¹² Svorky pro regulaci kVAr lze prohodit a limity obrátit: minimální hodnota pro 100 % analogového vstupu a maximální hodnota pro 0 % analogového vstupu.

Electric Power Generation	Instalace a údržba	5744 cz - 2024.01 / e

Poznámka: Posunutím kurzoru je možné na grafu způsobilost umístěném na pravé straně stránky zobrazit regulaci kVAr (modrá čára).

 Pokud je nastavena pevná referenční hodnota, lze referenční hodnotu upravit dvěma vstupy (nahoru a dolů), jeden impuls odpovídající vystoupení o jeden "krok" nahoru nebo sestoupení o jeden "krok" dolů. Oba vstupy, hodnota kroku a prodleva, musí být pevně stanoveny a toto nastavení je povoleno nastavením voliče na "Active" (Aktivní).

🥏 Setpoint adjustment			^
Not ActiveActive			
Step +/- kVAr		1.0	
Input -: D16	Input +: DI7		
Repeat delay	(ms)	300	

Poznámka: Vstupy "+" a "-" jsou stejné pro všechny režimy regulace.

 Limity této referenční hodnoty musí být pevné v závislosti na možnostech zařízení (v následujícím příkladu je regulace kVAr stanovena mezi -10 % jmenovitého výkonu kVA alternátoru (čerpání jalového výkonu z pohledu generátoru) a 62 % jmenovitého výkonu kVA alternátoru (dodávání jalového výkonu z pohledu generátoru)).

Tyto referenční limity definují světle zelenou plochu na grafu způsobilosti, ve kterém se může referenční hodnota lišit.

5.2.8.6. <u>Regulace účiníku v jednom bodě sítě</u>

- Použití regulačního režimu je možné pouze v případě, že je na regulátoru D550 připojen CT pro měření proudu sítě na vstup V.
- Tato regulace musí být aktivována, jakmile je zařízení připojeno k síti (datová položka "zapnutí stykače sítě") a deaktivována, jakmile je zařízení od sítě odpojeno. Zdroj stykače pro připojení k síti musí být uveden ve spodní části stránky:

Grid breaker Input:	
DI4	

- Pro zařízení připojená k síti jsou dalšími volbami regulace účiníku generátoru a regulace kVAr (viz kroky 10 a 11).
- Tato regulace se používá k regulaci účiníku v jednom bodě sítě. Za tímto účelem musí být zapojeno měření proudu alternátoru.
- Chcete-li povolit regulaci účiníku v jednom bodě sítě, zvolte typ aktivace v rozevíracím seznamu. Může to být:
 - Řízeno digitálním vstupem (DI1 až DI8).
 - Povoleno vždy volba "Always active" (Vždy aktivní) V tomto případě je regulace účiníku v jednom bodě sítě vždy povolena, a to v závislosti na pořadí priorit regulace.
 - Jestliže je zvolena možnost "None" (Žádný), regulace účiníku v jednom bodě sítě není povolena nikdy, nebo je povolena logickým členem.

Start-up	Voltage	Volt Matching	Generator Power Factor	kVAr	Grid Power Factor	Field Current
Regula None	tion enabled	d by				

- **Počáteční referenční bod** je určen buď pevnou hodnotou na kartě "Internal setpoint" (Interní hodnota nastavení), nebo analogovým vstupem, jehož zdroj, typ a rozsah musí být nastaveny v kartě "Setpoint from analog input" (Hodnota nastavení z analogového vstupu).
- Jestliže je zvolena možnost "Internal setpoint" (Interní hodnota nastavení), vyplňte referenční hodnotu napětí. Tuto hodnotu lze také upravit prostřednictvím sběrnice fieldbus.

🏉 Internal setpoint		^
Grid PF reference		-
0.800	Ξ	

Jestliže je zvolena možnost "Analog input" (Analogový vstup), aktivuje se část "Reference via analog input" (Reference prostřednictvím analogového vstupu). Označte políčko požadovaného analogového vstupu, určete jeho režim (+/-10 V, 0/10 V, 4–20 mA, potenciometr) a hodnoty účiníku při 0 % a 100 %. ¹³

	🥏 Setpoint from	n analog input	^
	AIN1	AIN2 AIN3	AIN4
	Analog Input co	onfiguration	
	Analog inpu	ut 4-20mA	
	0% value	100	% value
	1	.00	0.80
Kurzor —	Simula	ation	
		\rightarrow	

Poznámka: Posunutím kurzoru je možné na grafu způsobilost umístěném na pravé straně stránky zobrazit referenční hodnotu účiníku (modrá čára).

Poznámka: Tento graf způsobilosti je fiktivní, protože popisuje vývoj účiníku v jednom bodě sítě, nikoli na svorkách alternátoru.

• Pokud je nastavena pevná referenční hodnota, lze referenční hodnotu upravit dvěma vstupy (nahoru a dolů), jeden impuls odpovídající vystoupení o jeden "krok" nahoru nebo sestoupení o jeden "krok" dolů. Oba vstupy, hodnota kroku a prodleva, musí být pevně stanoveny a toto nastavení lze provést nastavením voliče na "Active" (Aktivní).

🏉 Setpoint adjustment	^
O Not Active	
Active	
Step +/- PF	0.010
Input -: DI6	Input +:
Repeat delay (m	is) 300

¹³ Referenční svorky pro minimální a maximální účiník lze prohodit a limity obrátit: minimální účiník pro 100 % analogového vstupu a maximální účiník pro 0 % analogového vstupu.

Poznámka: Vstupy "+" a "-" jsou stejné pro všechny režimy regulace.

Limity této referenční hodnoty by měly být nastaveny pevně dle potřeby. Na následujícím snímku obrazovky činí 1 a 0,8 (dodávání jalového výkonu z pohledu generátoru). Aktivní limity alternátoru by měly být takové, které udržují zařízení v rámci jeho grafu způsobilosti, ale také limity stanovené na této stránce. Za určitých podmínek může existovat referenční limit účiníku sítě, aniž by byl skutečně limitem této referenční hodnoty, protože reference účiníku zařízení je aktivní.

Tyto referenční limity definují světle zelenou plochu na grafu způsobilosti, ve kterém se může referenční hodnota lišit.

5.2.8.7. <u>Regulace budicího proudu (ruční režim)</u>

- Tato regulace slouží k přímému ovládání hodnoty budicího proudu. Používá se zejména během uvedení do provozu a jako záložní režim, pokud je hodnota naměřená regulátorem chybná (například naměřená hodnota napětí alternátoru nebo naměřená hodnota proudu alternátoru).
- Tento režim má prioritu před všemi ostatními režimy, které mohou být aktivní.
- Aby byla aktivována regulace budicího proudu, zvolte v rozevíracím seznamu typ aktivace. Může to být:
 - Řízeno digitálním vstupem (DI1 až DI8).
 - Povoleno vždy volba "Always active" (Vždy aktivní)
 - Jestliže je zvolena možnost "None" (Žádný), regulace budicího proudu není povolena nikdy, nebo je povolena logickým členem.

Start-up	Voltage	Volt Matching	Generator Power Factor	kVAr	Grid Power Factor	Field Current
Regulat	tion enable	d by				
DI5						

• **Počáteční referenční bod** je určen buď pevnou hodnotou na kartě "Internal setpoint" (Interní hodnota nastavení), nebo analogovým vstupem, jehož zdroj, typ a rozsah musí být nastaveny v kartě "Setpoint from analog input" (Hodnota nastavení z analogového vstupu).

🏉 Internal setpoi	nt	^
Field current setpoint (/ 0.00	4)	
Follower mode	?	

• **Funkce "sledování"** umožňuje při přepnutí z režimu regulace do manuálního režimu použít měření budicího proudu jako referenční hodnotu. Tím se zabrání jakýmkoliv viditelným "skokům" provozního bodu zařízení. Referenční hodnotu lze poté změnit pomocí vstupů nahoru a dolů.

Poznámka: Použití této funkce je možné pouze tehdy, je -li referenční bod pevně daný.

Jestliže je zvolena možnost "Analog input" (Analogový vstup), aktivuje se část "Reference via analog input" (Reference prostřednictvím analogového vstupu). Označte políčko požadovaného analogového vstupu, určete jeho režim (+/-10 V, 0/10 V, 4–20 mA, potenciometr) a hodnoty při 0 % a 100 %. ¹⁴

🥏 Setpoint from analog	input	^
AIN1 AIN2	AIN3 AIN4	
Analog Input configuration		
Analog input 4-20mA		
0% value	100% value	
0.00 A	1.00	Α
Simulation		

Poznámka: Posunutím kurzoru je možné na grafu umístěném vpravo od tvaru zobrazit odpovídající referenční hodnotu budicího proudu.

• Pokud je nastavena pevná referenční hodnota, lze referenční hodnotu upravit pomocí dvou vstupů (nahoru a dolů), jeden impuls odpovídající vystoupení o jeden "krok" nahoru nebo sestoupení o jeden "krok" dolů. Oba vstupy, hodnota kroku a prodleva, musí být pevně stanoveny a toto nastavení je povoleno nastavením voliče na "Active" (Aktivní).

¹⁴ Referenční svorky pro minimální a maximální budicí proud lze prohodit: minimální budicí proud pro 100 % analogového vstupu a maximální budicí proud pro 0 % analogového vstupu.

Electric Power Generation	Instalace a údržba	5744 cz - 2024.01 / e

🏉 Setpoint adjustment	^
Not ActiveActive	
Step +/- IF (A)	0.05
Input -: II DIG	nput +: DI7
Repeat delay (m	is) 300

Poznámka: Vstupy "+" a "-" jsou stejné pro všechny režimy regulace.

P 5.2.9. Nastavení zesílení PID

Na této stránce končí rychlá konfigurace. Pokud je váš regulátor D550 připojen, je možné do něj přenést konfiguraci. Pokud chcete upřesnit parametry, které nejsou v režimu rychlé konfigurace dostupné, klikněte na "Continue configuration in Customized mode" (Pokračovat v konfiguraci ve vlastním režimu).

🕵 Settings				
PID sett	ings			▼
	Voltage	Field current		Grid/Load
Proportional	9,000	2,000		
Integral	90	50		
Derivative	800	30		
Gain	110	100		
	1	1		
Regulation I	oop speed		_	
0: 2.5 ms		-		
Negative	forcing		?	
DC Bus v	oltage comper	sation	2	
AVR PC Upi	oad you iguratic	r n	Continue configuration in custom mode	

• Nastavte různá zesílení PID. V polích jsou vždy dány výchozí hodnoty.

	Voltage	Field current	PF/kVAr	Grid PF			
Proportional	7,000	2,100	10	1			
Integral	100	60	10	1			
Derivative	500	15	0	0			
Gain	100	100	100	100			
		1	1				
Regulation I 0: 2.5 ms	oop speed						
Negative	forcing			?			
🗌 DC Bus v	📄 DC Bus voltage compensation 🛛 ? 🚹						
AVR t PC Upl conf	AVR PC Upload your configuration						

Electric Power Generation

Digitální regulátor napětí D550

- Rychlost regulační smyčky může být upravena podle doby odezvy generátoru v rozmezí 2,5 ms až 20 ms v krocích po 2,5 ms. Jestliže je tato hodnota změněna, bude třeba upravit i zesílení PID.
- Pokud provoz alternátoru vyžaduje různé kroky zatížení, ať už zvyšování nebo snižování zatížení (samostatný provoz nebo provoz paralelního zařízení), může být vhodné zvolit "negativní nucení". Tato funkce je použita ke krátké inverzi napětí na svorkách pole budiče, aby se minimalizovala doba potřebná k obnovení jmenovitého napětí.

 Jestliže je používáno pole typu shunt nebo AREP, závisí napájecí napětí přímo na napětí na svorkách alternátoru. V důsledku toho může docházet k jeho kolísání podle zatížení a tím může být ovlivněno chování PID. Pro kompenzaci těchto výkyvů může být vhodné aktivovat funkci "VBus compensation" (Kompenzace sběrnice VBus). Níže je uveden příklad počátečního náběhu s kompenzací a bez kompenzace v případě buzení typu shunt:

• Klikněte na tlačítko "Next" (Další).

5.2.10. Správa vstupů/výstupů

- Kromě vstupů použitých na konfiguračních stránkách regulace (které jsou již zobrazeny v šedé barvě) lze nakonfigurovat další vstupy.
- Analogové vstupy/výstupy lze nakonfigurovat definováním zdroje, konfigurace a hodnot 0 % a 100 %.

Analo	Analog Inputs/Outputs							•
D	Configuration AI	Destination	0% value	100% value	Source	Configuration AO	0% value	100% value
AI01	4-20mA 🔹	None	0.00	0.00	None	None 🔹	0	0
AI02	0-10V	None	0.00	0.00	None	None	0	0
AI03	0-10V	None	0.00	0.00	None	None	0	0
AI04	0-10V	None	0.00	0.00	None	None	0	0

 Digitální vstupy/výstupy lze konfigurovat definováním zdroje a aktivace (aktivní při nízké hodnotě = zavřený při splnění podmínky, aktivní při vysoké hodnotě = výstupy otevřené při splnění podmínky). Konfigurovaný typ je zobrazen na obrázku na pravé straně obrazovky (relé nebo tranzistor).

Digital Input	Active	Destination		Source	Active	Digital Output
011	Active Low	None	-	None	Active Low	- DO1
012	Active Low	None		None	Active Low	DO2
13	Active Low	None		None	Active Low	DO3
14	Active Low	None		None	Active Low	DO4
)15	Active Low	None		None	Active Low	DO5
016	Active Low	None		None	Active Low	D06
017	Active Low	None		None	Active Low	DO7
218	Active Low	None		None	Active Low	DO8
				None	Active Low	RL1
				None	Active Low	RL2

5.2.11. <u>Funkce křivky</u>

5.2.11.1. Přehled

Funkce křivky se používají k regulaci parametru jako funkce jiného parametru. Například:

- Referenční hodnota kVAr jako funkce napětí během regulace kVAr
- Maximální proud statoru jako funkce teploty statoru
- · Maximální budicí proud jako funkce teploty nebo analogového vstupu
- Referenční napětí jako funkce rychlosti
- Budicí proud jako funkce činného výkonu
- Specifické měřítko
- atd.

Funkce křivky lze vytvořit.

Aby funkce křivky fungovala, je třeba definovat parametry os X a Y a také 5 bodů. Tyto funkce jsou aktivní, jakmile je vytvořena křivka.

Pole křivky lze resetovat kliknutím na tlačítko "Reset" u každé křivky.

X axis	None	Y axis None	▼ Reset	
Point 1	0.00		None=f(None)	
Point 2	0.00			
Point 3	0.00			
Point 4	0.00 0.00			
Point 5	0.00 0.00			

5.2.11.2. Příklady funkcí křivky

• Referenční hodnota jalového výkonu jako funkce napětí v síti pro zařízení s napětím 400 V.

Poznámka: Můžeme vidět, že pro hodnotu napětí nižší, než je hodnota definovaná v bodě "1", je referenční hodnota výkonu udržována na hodnotě definované v bodě "1". Pro hodnotu napětí vyšší, než je hodnota definovaná v bodě "5", je referenční hodnota jalového výkonu udržována na hodnotě definované v bodě "5".

• Referenční hodnota budicího proudu jako funkce teploty měřené na statoru (v našem příkladu teplota 1). Pro nízkou teplotu je tedy povoleno zvýšení budicího proudu.

X axis P	7100#1 Tem	perature	▼ Y axis Generator rated nominal field current ▼ Reset
Point 1	-30.00	3.50	Generator rated nominal field current=f(PT100#1 Temperature)
Point 2	0.00	3.00	3.5
Point 3	10.00	2.50	3
Point 4	25.00	2.00	2.5
Point 5	30.00	1.50	1.4
			-3665 -30 -25 -20 -15 -10 -5 10 5 10 15 20 25 30 3

5.2.12. Zesílení PID uživatelem

Tato funkce umožňuje mít nezávislý regulátor PID, který lze použít k regulaci jiné komponenty.

5.2.13. Logické/analogové členy

5.2.13.1. Přehled

Logické a analogové členy se používají pro jednoduché ovládání pomocí jednoho nebo dvou vstupů a jednoho konfigurovatelného výstupu výběrem hodnot z rozevíracích seznamů.

E1 None	
E2 None	S None
	S=E1.E2 n°1 ?

Seznamy parametrů lze zvětšit kliknutím v pravé dolní části seznamu a podržením až do dosažení požadované velikosti:

E1	None	<u>E1</u>
	None	
E2	ControlRegs	۴-
	LAM Engine Help	
	Self-adaptive LAM Engine Help	
	Threshold Start	
	Soft Voltage Recovery	H
=1	Motor Start	1
	V/Hz Limit Mode Active	
	Current Limit Mode Active	2
E2	Soft Start Mode Active	F
	AVR Regulation Mode Active	
	Volt Matching mode	
	FCR Regulation Mode Active	н
	Generator PF Regulation Mode Active	
E1	VAR Regulation Mode Active	

TIP: Chcete-li parametr vyhledat rychleji, můžete v rozevíracím seznamu zadat jeho prvních několik písmen.

Typ členu lze změnit kliknutím na příslušný člen. Poté se zobrazí vyskakovací nabídka:

Lze použít maximálně 20 členů se dvěma vstupy.

Mohou být zapojeny postupně (s použitím výstupního členu jako vstupní podmínky pro jiná člen). Digitální "uživatelské" proměnné lze použít jako vstupní parametr členu v režimu komparátoru.

K dispozici jsou následující členy:

Typ členu	Zobrazení	Typ parametru	Pravdivostní tabulka
A	E1 E2 S=E1.E2 m ¹	Binární	E1 E2 S 0 0 0 0 1 0 1 0 0 1 1 1
NEBO	E1 E2 S=E1 + E2 n°1	Binární	E1 E2 S 0 0 0 0 1 1 1 0 1 1 1 1
Exkluzivní disjunkce	E1 E2 S=E1⊕E2 nº1	Binární	E1 E2 S 0 0 0 0 1 1 1 0 1 1 1 0
KOMPARÁTOR	E1 E2 S=E1 > E2 n ¹¹	E1 a E2 decimální O binární	O E1 <e2< td=""> 0 E1=E2 0 E1>E2 1</e2<>
SET-RESET	E1 SET S E2 RESET	Binární	E1 E2 S 0 0 S 0 1 0 1 0 1 1 1 0
PŘEPÍNÁNÍ	E1 S S=S n°6	Binární	Na náběžné hraně I1, S mění stav
KOPIE	E1 E2 If E1=1 then S=E2	E1 binární E2 a S decimální	E1 E2 S 0 0 0 0 E2 0 1 E2 E2
SČÍTÁNÍ	E1 E2 S=E1+E2 n ² 2	E1 a E2 decimální S decimální	S = E1 + E2
ODČÍTÁNÍ	E1 E2 S=E1-E2 n°3	E1 a E2 decimální S decimální	S = E1 - E2
NÁSOBENÍ	E2 S=E1*E2 n°4	E1 a E2 decimální S decimální	S = E1 x E2

Typ členu	Zobrazení	Typ parametru	Pravdivostní tabulka
DĚLENÍ	E1 E2 S=E1/E2 n°5	E1 a E2 decimální S decimální	S = E1 / E2 S hodnota se nemění, jestliže E2 je nula
PROCENTO	E1 E2 S=(E1/E2)*100 n*6	E1 a E2 decimální S decimální	S = (E1/E2)*100
TEMPORIZACE	E1 E2 S=1 if (E1=1 et t>=E2)	E1 binární E2 decimální (v sekundách) S binární	S=1, jestliže (E1=1 a t⊵E2) S=0, jestliže E1=0 nebo t <e2< td=""></e2<>

Vstupy a výstupy lze v případě členů A, NEBO, EXKLUZIVNÍ DISJUNKCE obrátit; opět pomocí rozbalovací nabídky brány. V tom případě symbolizuje obrácení bílý kruh a je aktualizován vzorec členu. Příklad níže se vstupem E1 obráceným na členu A:

Pole logického členu lze resetovat pomocí vyskakovací nabídky členu a klepnutím na "RESET".

Nápověda je dostupná kliknutím na otazník, který vyvolá pravdivostní tabulku pro aktivní člen. Toto je člen A¹⁵.

E1	E2	S
0	0	0
0	1	0
1	0	0
1	1	1

5.2.13.2. Příklad programování členu

 Spuštění regulátoru při prahové hodnotě napájecího napětí: jakmile je napájení zapnuto, zvyšuje se napájecí napětí. Měla by proto být stanovena prahová hodnota, nad kterou bude možné provést náběh. Je použita uživatelem definovaná proměnná.

Pro následující proměnné je poté zvolen člen "KOMPARÁTOR":

- E1 "Internal power supply Volts" (Napětí interního zdroje napájení ve V)
- E2 "User variable 1" (Uživatelská proměnná 1), nastavena na 10 (DC sběrnice 10 V)
- S "Starting" (Spuštění)

¹⁵ Pravdivost bere v úvahu všechna převrácení nakonfigurovaná na členu.

E1 Internal Power Supply Volts		
E2 User variable 1		M
	S=E1 > E2 n°1 ?	

Poznámka: Hodnota "User variable 1" (Uživatelská proměnná 1) závisí na napětí, které může váš budicí systém pole zajistit pomocí zbytkové magnetizace. V našem příkladu zvolíme 10 V.

 Regulace VAr pro zatížení menší než 10 % jmenovitého výkonu (připojeno k síti): jakmile je zařízení připojeno k síti bez přítomnosti zatížení, mohou se projevit nestability z důvodu rušení měření proudu statoru. Regulaci kVAr tedy doporučujeme, pokud je činný výkon menší než 10 % jmenovitého výkonu alternátoru.

Pro následující proměnné je poté zvolen člen "KOMPARÁTOR":

- E1 "User variable 2" (Uživatelská proměnná 2), nastavena na 10 (10% jalový výkon)
- E2 "Real power percentage" (Procenta reálného výkonu)
- S "VAR regulation" (Regulace VAr)

E1 User variable 2		
E2 Real Power percentage	S VAR Regulation	
	S=E1 > E2 n*1 ?	

- Pulzní spouštění a zastavování: Funkce regulace je aktivována udržovaným vstupem. Jakmile se změní stav tohoto vstupu, buzení pole se zastaví. Pulzní spouštění a zastavování lze nakonfigurovat s použitím členu SET-RESET:
 - E1 "DI1", který vysílá impuls ke spuštění
 - E2 "DI2", který vysílá impuls k zastavení
 - S "Starting" (Špuštění)

Výsledek je tedy následující:

E1 DI1 State	- E1	SET],	
E2 D12 State	2 E 2	RESET	F	S Start
		L	n°2	2 🗈

P 5.2.14. Protokol událostí

g e	event	▼ 🚺 🗲 Previous	Next 🔸 🕨 主	
abled / abled	Event	Event counter	lexc during last loss of sensing fault detected	
	Enable overvoltage fault detected log	0	0	Event n
	Enable undervoltage fault detected log	0	0	
	Enable overfrequency fault detected log	0	0	
	Enable underfrequency fault detected log	0	0	
	Enable open diode fault detected log	0	0	
	Enable short diode fault detected log	0	0	
	Enable reverse active power fault detected log	0	0	
	Enable reverse reactive power fault detected log	0	0	
	Enable PT100 1 alarm detected log	0	0	
	Enable PT100 1 fault detected log	0	0	
	Enable PT100 2 alarm detected log	0	0	
	Enable PT100 2 fault detected log	0	0	
	Enable PT100 3 alarm detected log	0	0	
	Enable PT100 3 fault detected log	0	0	
	Enable PT100 4 alarm detected log	0	0	
	Enable PT100 4 fault detected log	0	0	
	Enable PT100 5 alarm detected log	0	0	
	Enable fault detected log	0	0	
	Enable CTP 1 fault detected log	0	0	
	Enable CTP 2 fault detected log	0	0	
	Enable CTP 3 fault detected log	0	0	
	Enable CTP 4 fault detected log	0	0	
	Enable CTP 5 fault detected log	0	0	
	Enable loss of sensing fault detected log	0	0	
	Enable unbalanced voltage fault detected log	0	0	
	Enable unbalanced current fault detected log	0	0	
	Enable short circuit fault detected log	0	0	
	Enable IGBT fault detected log	0	0	
	Enable motor start fault detected log	0	0	
	Enable power bridge overload fault detected log	0	0	
	Enable main field overload detected log	0	0	
	Enable main field overheating detected log	0	0	
	Enable stator overload detected log	0	0	
	Enable stator overheating detected log	0	0	
	Enable battery under voltage detected log	0	0	
	Enable CAN under voltage detected log	0	0	

Pro každou vybranou událost bude zvýšena hodnota na příslušném počitadle vždy, když k události dojde. V takovém případě bude zaznamenán budicí proud.

5.2.15. Druhá konfigurace

Tato funkce je obvykle označována jako "funkce přepínání 50/60 Hz", nabízí však další funkce a možnosti a používá se ke změně maximálně 16 parametrů na základě stavu logického vstupu. Upozorňujeme, že druhá konfigurace bude zohledněna teprve po restartu regulátoru.

na contig	guration	- I F	Previous Next	★ ±
	Your modificati	ons will be take account on the regulator.	on the next pow	er on of
Second co	onfiguration enable	2nd configuration Not used		
Analog parar	neters type			
Paremter Id	TAT.	Destination	Configuration 1 value	Configuration 2 value
1	None		0	0
2	None		0	0
3	None		0	0
4	None		0	0
-5	None		0	0
6	None		0	0
1	None		0	0
8	None		0	0
10	None			0
10	None			0
	Hone			
Could also a sure of				
Switch parall	leters type	Darlination	Configuration 1 value	Configuration 2 value
Parameter Id	None	Organization	Sonngeration in Value	Configuration 2 value
12	None		-	
14	None			
15	None			
16	None			

• Zvolte zdroj aktivace druhé konfigurace.

2nd configuration		
driving by Dl1	-	

Aktivace vstupu DI1 způsobí přepnutí na druhou konfiguraci a jeho deaktivace obnoví regulaci se základní konfigurací.

Připomínka: Přepnutí je zohledňováno pouze při spuštění regulace Jakákoli aktivace či deaktivace během provozu regulátoru je ignorována.

• **Vyberte parametry**, které budou při přepnutí na tuto druhou konfiguraci ovlivněny. Ve výše uvedeném příkladu definujeme novou hodnotu spodního limitu frekvence 58 Hz, novounastavenou hodnotu napětí 480 V a sklon V/Hz je nastaven na hodnotu 1,5.

P 5.2.16. <u>Synchronizace</u>

Pokud je zapojeno měření napětí distribuční sítě, je regulátor D550 schopen spustit synchronizační sekvenci sítě. V tomto případě zkontrolujte, zda je uspořádání fází správné, protože regulátor D550 to nedělá.

Je třeba nastavit frekvenci, napětí a rozsahy fázových úhlů. Ty musí být splněny, aby mohlo dojít k připojení bez poškození zařízení.

Musí být také nakonfigurována doba zapnutí jističe mezi alternátorem a sítí. Tím je zajištěno, že synchronizace může být provedena a dokončena před opuštěním konfigurované zóny připojení.

Synchronizační sekvence je řízena logickým vstupem nebo parametrem, který je udržován v aktivním režimu (ovladatelný prostřednictvím komunikace nebo logického členu).

Možný synchronizační impuls zůstává aktivní, dokud jsou rozdíl frekvence a rozdíl napětí v rozsahu definovaném horní a dolní mezí. Proto by měl být zajištěn signál pro zavření stykače připojení k síti.

Rozdíl frekvence může být použit k řízení analogového výstupu, který bude odesílat informaci generátorové soustavě (nebo jakéhokoli jiné řídící zařízení), že je třeba zvýšit nebo snížit frekvenci pohonného systému. Parametry by měly být nastaveny na stránce "I/O" (Vstupy/výstupy). Níže je uveden příklad rozdílu frekvence v rozmezí -0,5 Hz a +0,5 Hz.

Ana	log Inputs/Outp	uts						÷.
D	Configuration Al	Destination	0% value	100% value	Source	Configuration AO	0% value	100% value
AI01	4-20mA	None	0.00	0.00	Delta frequency for synchronisation	+/-10V	-0.5	0.5
4102	0_101/	None	0.00	0.00	None	None	0	0

To odpovídá následujícímu grafu:

5.2.17. <u>Distribuční síť</u>

Funkce Grid code (Kodex sítě) umožňuje prostřednictvím aktivace jedné nebo několik ochranných funkcí detekovat problémy přicházející ze sítě, jako jsou krátkodobé poklesy napětí (Low Voltage Ride Through – LVRT) nebo FRT (Fide Ride Through). Tyto události mohou poškodit generátor. Regulátor D550 má 4 nezávislé funkce:

- Podpora napětí pro detekci chyb distribuční sítě
- Monitorování profilu distribuční sítě
- Monitorování posunu pólu
- Monitorování maximálního proudu statoru

To také umožňuje uložit některé parametry, například naměřené hodnoty napětí generátoru, naměřené hodnoty proudu generátoru nebo vnitřní úhly.

Tato funkce je k dispozici, je-li nainstalován volitelný kodér a je zapojen modul Easy Log.

5.2.17.1. Podpora napětí

Tento nástroj se aktivuje výběrem možnosti "Enable voltage support in PF mode" (Povolit podporu napětí v režimu účiníku). Může být nakonfigurována prodleva před přechodem do režimu napětí (v ms) a také rozdíl napětí v procentech jmenovitého napětí sítě.

🗞 Settings		- • •
GridCode	✓ I ← Previous Next → ★	
Profil Functions Regulations Setpoint variation		
Enable pole slipping detection		
Enable I stator Max		
Enable voltage support in PF mode		

Tyto parametry umožňují regulátoru D550 donutit režim regulace napětí k podpoře sítě absorbováním jalového výkonu omezeného konfigurovaným profilem P-Q (křivka způsobilosti) nebo generováním jalového výkonu (s možným omezením), pokud je napětí měřené na svorkách alternátoru mimo definovaný rozsah. V následujícím příkladu je rozdíl 10 %:

Stav této podpory může být ovlivněn logickým výstupem nebo použit v logických funkcích. Níže je uveden příklad s touto chybou řešenou na výstupu DO2 na stránce "Inputs/Outputs" (Vstupy/výstupy).

Active	Digital Output
Active Low	D01
Active Low	D02
	Active Active Low

5.2.17.2. Monitorování profilu distribuční sítě

Tato funkce se aktivuje výběrem možnosti "Enable grid code profile monitoring" (Povolit monitorování profilu distribuční sítě). Je také nezbytné vyplnit hodnoty profilu požadované kodexem sítě platným v místě, kde je regulátor D550 implementován. Umožňuje sledovat, zda je napětí generátoru vždy alespoň větší nebo stejné jako hodnota uvedená v profilu, jakmile je spuštěna událost distribuční sítě. Pokud je napětí nižší než hodnota stanovená profilem, je aktivováno oznámení poruchy.

Stav tohoto monitorování může být ovlivněn logickým výstupem nebo použit v logické funkci. Níže je uveden příklad s touto chybou řešenou na DO2 na stránce "Inputs/outputs" (Vstupy/výstupy).

Digital Outputs							
Source		Active		Digital Output			
None		Active Low		D01			
State of grid code profile monitoring	Ŧ	Active Low	Ŧ	DO2			
None		Active Low		DO3			

5.2.17.3. Monitorování proudu statoru

Tato ochrana se aktivuje výběrem možnosti "Enable I stator Max" (Povolit monitorování max. proudu statoru) a zadáním hodnot pro maximální proud, kterému je generátor schopen odolat (v násobcích jmenovitého proudu statoru). Takový nadproud může nastat, když se síť zotaví po chybě distribuční sítě, pokud je rozdíl mezi úhlovou polohou rotoru a elektrickým úhlem příliš velký.

Měření nadproudu je prováděno prostřednictvím k tomu učeného CT připojeného na vstup CT "Grid code" (Distribuční síť). Hodnoty pro primární a sekundární vinutí musí být nastaveny na stránce "Wiring" (Zapojení). Níže je uveden příklad s koeficientem nastaveným na hodnotu "2".

Enable I stator Max			
I stator maximum coeff	2	1	Reset I stator event

Poznámka: Protože je nadproud velmi rychlý, nebude chybovým stavem chyba automatického resetu.

Stav nadproudu může být ovlivněn výstupem nebo použit v logické funkci. Níže je uveden příklad s touto chybou řešenou na DO2 na stránce "Inputs/outputs" (Vstupy/výstupy).

Naměřená hodnota proudu distribuční sítě

5.2.17.4. Monitorování posunu pólu

Tato detekce je možná pouze v případě, že je kodér nainstalován a zapojen do vstupu pro kodér na doplňku EasyLog PS připojeném k D550.

Tato funkce je aktivována výběrem možnosti "Enable pole slipping detection" (Povolit detekci posunutí pólu) a zadáním hodnot pro různé parametry:

- Hodnota úhlu pro upozornění (ve stupních)
- Maximální úhel (ve stupních) •
- Rozlišení kodéru (v bodech)
- Ofset kodéru
- Počet párů pólů generátoru •

Instalace a údržba

Digitální regulátor napětí D550

Monitorování vnitřního úhlu, když je síťové napětí výrazně sníženo nebo ztraceno kontroluje, zda vnitřní úhel generátoru nepřekračuje definovanou hodnotu. Je-li vnitřní úhel posunutý, může při opětném zapojení sítě dojít k zásadnímu mechanickému a elektrickému poškození a může dojít ke zničení některých prvků v generátoru.

Pro posun pólů je také k dispozici funkce automatické kalibrace.

Enable pole slipping detection								
Value alert angle	20	Encoder offset	0					
Value maximum angle	40	Pole pair	2	±	Pole Slipping Auto	£	Reset pole slipping	
Encoder resolution	1,024				Calibration		event	

Stav posunu pólů může být ovlivněn výstupem nebo použit v logické funkci.

5.3. Okno srovnání

Toto okno je k dispozici po kliknutí na tlačítko na panelu na úvodní obrazovce:

Funkce srovnání má následující použití:

Srovnání konfigurace regulátoru D550 se souborem

• Zvolte soubor konfigurace kliknutím na tlačítko souboru 1 "...".

Run the comparison between the	Save -	File 1	
AVR and the file:	comparison	File 2	 Compare

- Klikněte na tlačítko "Run the comparison between the AVR and the file" (Spustit srovnání meziregulátorem a souborem).
- Upravené parametry se zobrazí v následujícím seznamu.

م Paremeter Number	¢ Parameter name ۶	ీ Open file value ని	ື AVR Value ຼ⊅	[‡] Unit ຸ2
002.008	Cross Current Enable	Active	Not active	
002.010	Stator current Limit Enable	Active	Not active	
002.017	LAM Engine Help	Enabled	Not enabled	
002.020	Soft Voltage Recovery	Enabled	Not enabled	
003.001	Voltage regulation proportional gain	7000	9000	
003.002	Voltage regulation integral gain	100	120	

• Srovnání dvou souborů konfigurace

- Zvolte soubor první konfigurace kliknutím na tlačítko souboru 1 "…".
- Zvolte soubor druhé konfigurace kliknutím na tlačítko souboru 2 "…".
- Klikněte na tlačítko "Compare" (Srovnat) vpravo.

R	tun the comparison between the	Save 🚃	File 1	C:\Users\robyr\Documents\0_20190124_1558.550		Compare
	AVR and the file:	comparison	File 2	C:\Users\robyr\Documents\0_20190124_5621.550		

• Upravené parametry se zobrazí jako seznam.

5.4. <u>Tisk zpráv</u>

Chcete-li získat přehled konfigurace jako zprávu, je možné to provést pomocí tlačítka "Print" (Tisk). To je aktivní pouze tehdy, pokud je otevřena stránka nastavení. Tato zpráva uvádí údaje o konfiguraci regulátoru. Otevře se okno a tuto zprávu lze vytisknout a/nebo exportovat do jiného formátu.

5.5. Export do tabulky Excel

Po kliknutí na tlačítko uložení je možné konfiguraci exportovat jako soubor Excel.

Vytvořený soubor obsahuje jednotlivé parametry s:

- Identifikátorem (ID)
- Názvem parametru
- Minimální hodnotou
- Maximální hodnotou
- Hodnotou

- Výchozí hodnotouJednotkou
- Adresou sběrnice CAN
- Typem hodnoty

Hodnoty v šedé barvě jsou "pouze pro čtení", ostatní jsou pro čtení i pro zápis.

A A	В	С	D	E	F	G	H	I
1 Id	Parameter name	Minimum value	Maximum value	Value	Initial value	Unit	CAN Address	Туре
2 000.000	Menu0						000.000	INT16
3 001.000	SystemData		_	_	_		001.000	INT16
4 001.001	Voltage UN	0	100000	0	0	V	001.001	FLOAT32
5 001.002	Voltage VN	0	100000	0	0	V	001.002	FLOAT32
6 001.003	Voltage WN	0	100000	0	0	V	001.003	FLOAT32
7 001.004	Voltage UV	6	100000	0	0	V	001.004	FLOAT32
8 001.005	Voltage VW	0	100000	0	0	V	001.005	FLOAT32
9 001.006	Voltage WU	5	100000	0	0	V	001.006	FLOAT32
10 001.007	Line Current U	0	10000	0.0	0	A	001.007	FLOAT32
11 001.008	Line Current V	0	10000	0.0	0	A	001.008	FLOAT32
12 001.009	Line Current W	0	10000	0.0	0	A	001.009	FLOAT32
13 001.010	Bus Voltage L1L2	5	100000	0	6	V	001.010	FLOAT32
14 001.011	Grid Current V	0	10000	0.0	0	A	001.011	FLOAT32
15 001.012	Real Power KW	5	1000000	0	6	kW	001.012	FLOAT32
16 001.013	Real Power KW U	0	1000000	0	0	kW	001.013	FLOAT32
17 001.014	Real Power KW V	5	1000000	0	6	kW	001.014	FLOAT32
18 001.015	Real Power KW W	6	1000000	0	0	kW	001.015	FLOAT32
19 001.016	Reactive Power KVAR	0	1000000	0	0	kVAr	001.016	FLOAT32
20 001.017	Reactive Power KVAR U	6	1000000	0	0	kVAr	001.017	FLOAT32
21 001.018	Reactive Power KVAR V	0	1000000	0	0	kVAr	001.018	FLOAT32
22 001.019	Reactive Power KVAR W	5	1000000	0	0	kVAr	001.019	FLOAT32
23 001.020	Apparent Power KVA	0	1000000	0	0	kVA	001.020	FLOAT32
24 001.021	Apparent Power KVA U	5	1000000	0	6	kVA	001.021	FLOAT32
25 001.022	Apparent Power KVA V	0	1000000	0	0	kVA	001.022	FLOAT32
26 001.023	Apparent Power KVA W	0	1000000	0	0	kVA	001.023	FLOAT32
27 001.024	Power Factor	-1	1	0.000	0	PF	001.024	FLOAT32
28 001.025	Power Factor U	-1	1	0.000	0	PF	001.025	FLOAT32
29 001.026	Power Factor V	-1	1	0.000	0	PF	001.026	FLOAT32
30 001.027	Power Factor W	-1	1	0.000	0	PF	001.027	FLOAT32
31 001.028	Frequency Voltage W	0	500	0.0	0	Hz	001.028	FLOAT32
32 001.029	Field Current	0	1000	0.00	0	A	001.029	FLOAT32
33 001.030	Field Voltage	0	5000	0.00	0	V	001.030	FLOAT32
34 001.031	Internal Power Supply Volts	0	500	0.0	0	V	001.031	FLOAT32
35 001.032	PT100#1 Temperature	-70	600	0.0	0	°C	001.032	FLOAT32
36 001.033	PT100#2 Temperature	-70	600	0.0	0	°C	001.033	FLOAT32
37 001.034	PT100#3 Temperature	-70	600	0.0	0	°C	001.034	FLOAT32
38 001.035	PT100#4 Temperature	-70	600	0.0	0	°C	001.035	FLOAT32
39 001.036	PT100#5 Temperature	-70	600	0.0	0	°C	001.036	FLOAT32
40 001.037	PTC 1	100	4700	0	0	ohm	001.037	FLOAT32
41 001.038	PTC 2	100	4700	0	0	ohm	001.038	FLOAT32
10 001 020	DTC 2	100	4700	0	0	ohm	001 020	ELOAT20

6. <u>Pokyny k údržbě</u>

6.1. Varovné symboly pro údržbu

Viz <u>část 1.4</u> "Bezpečnostní zařízení a obecné varovné symboly". Preventivní údržba regulátoru D550 by měla být prováděna při vypnutém alternátoru, a měly by být vypnuty a odpojeny všechny zdroje napájení.

6.2. Pokyny k preventivní údržbě

Během odstavení alternátoru za účelem preventivní údržby zkontrolujte, zda jsou vodiče upevněny v konektorech (utahovací moment v rozmezí 0,6 až 0,8 Nm) a profoukněte zařízení suchým vzduchem, abyste se zbavili veškerého prachu, který se mohl usadit na regulátoru D550 a kolem něj. Zvláštní pozornost je třeba věnovat zajištění volné cirkulace vzduchu kolem hliníkového chladiče na zadní straně zařízení.

Regulátor D550 má časovač přístupný prostřednictvím parametru 254.008 (parametr 8 v nabídce 254) (v hodinách a minutách). Sledujte dobu provozu a pokud tato doba přesáhne 40 000 hodin, zvažte výměnu regulátoru.

Poznámka: Čas na tomto časovači se přičítá každých 10 minut, a to pouze tehdy, když je dosaženo referenční hodnoty napětí.

6.3. Anomálie a mimořádné události

Na regulátoru se může vyskytnout řada anomálií, které mohou vést k jeho výměně. Hlavní chyby jsou uvedeny v následující tabulce.

ANOMÁLIE	PŘÍČINY	NÁPRAVNÁ OPATŘENÍ	OPĚTOVNÉ SPUŠTĚNÍ
Chyba snímání napětí	Poškozen VT snímající alternátor	Vyměňte vadný VT	Zastavte alternátor a poté, co vyměníte vadný VT, alternátor znovu spusťte
	Interní měření přerušeno	Vyměňte regulátor	Vyměňte regulátor dle popisu v kapitole 6.4
Chyba buzení	Vadná součást nebo přerušení obvodu buzení pole, které způsobilo přepětí na tranzistoru	Vyměňte regulátor	Vyměňte regulátor dle popisu v <u>kapitole 6.4</u>
Chyba 24V ss. pomocného napájení	Chyba externího zdroje	Vyměňte 24V ss. pomocné napájení	Zastavte alternátor a poté, co vyměníte vadný zdroj napájení, alternátor znovu spusťte
	Chyba převodníku napětí	Vyměňte regulátor	Vyměňte regulátor dle popisu v <u>kapitole 6.4</u>
Regulátor neodpovídá (displej je zamrzlý, žádná komunikace atd.)	Chyba mikrokontroléru	Vyměňte regulátor	Vyměňte regulátor dle popisu v <u>kapitole 6.4</u>

Electric Power Generation

Instalace a údržba

Digitální regulátor napětí D550

ANOMÁLIE	PŘÍČINY	NÁPRAVNÁ OPATŘENÍ	OPĚTOVNÉ SPUŠTĚNÍ
Režimy regulace kontrolované vstupem nejsou aktivní	Vadný vstup	Změňte ovládání režimu regulace na jiný vstup	Zastavte alternátor a poté, co provedete nová nastavení, alternátor znovu spusťte
		Vyměňte regulátor	Vyměňte regulátor dle popisu v <u>kapitole 6.4</u>
	Zapojení je vadné	Prostřednictvím shuntingu připojení 0 V a místního vstupu zkontrolujte, zda byl vstup aktivován	Alternátor opět spusťte
Nedochází k buzení pole	Vadný startovací vstup	Změňte ovládání startu na jiný vstup	Zastavte alternátor a poté, co provedete nová nastavení, alternátor znovu spusťte
	Napájení regulátoru není spuštěno	Zkontrolujte sběrnici VBus na HMI	Alternátor opět spusťte
	24V ss. zdroj napájení je vadný	Zkontrolujte, zda je regulátor napájen, pomocí LED kontrolky napájení	Alternátor opět spusťte
Regulátor účiníku je nestabilní	Činný výkon je příliš nízký, aby bylo možné správně změřit účiník	Použijte režim kVAr pro regulaci při nízkém zatížení (méně než 10 % jmenovitého zatížení)	Změňte nastavení regulátoru a znovu spusťte alternátor
	Měření proudu statoru je nesprávné	Zkontrolujte zapojení CT na vstupu pro měření proudu a na CT	Alternátor opět spusťte
		Jestliže je zapojení v pořádku, vyměňte regulátor	Vyměňte regulátor dle popisu v <u>kapitole 6.4</u>

6.4. Výměna vadného regulátoru

Tyto činnosti musí být provedeny kvalifikovaným personálem. Viz varovné symboly v části 2.2.

Při výměně vadného regulátoru D550 postupujte následujícím způsobem:

- Vypněte a odpojte od elektřiny pomocné napájení a napájení a zkontrolujte, že
- není přítomno napětí.
- Opatrně odpojte všechny konektory regulátoru a poznačte si jejich polohu.
- Uvolněte všechny upevňovací prvky regulátoru, aby bylo možné jej odstranit z jeho umístění.
- Pokud nemáte konfigurační soubor regulátoru a stav D550 to umožňuje, importujte konfiguraci z vadného regulátoru D550 prostřednictvím softwaru EasyReg Advanced a USB kabelu.
- S použitím počítačového softwaru opět exportujte získanou konfiguraci do nového regulátoru D550.
- Odpojte USB disk regulátoru D550.
- Upevněte regulátor D550 na místo vadného regulátoru.
- Připojte veškeré konektory do nového regulátoru.
- Zapněte pomocné napájení a zkontrolujte, zda je regulátor pod napětím.
- Spusťte pohonný systém alternátoru.
- Před uskutečněním buzení alternátoru zkontrolujte měření napětí alternátoru a napětí napájení (VBus).
- Aktivujte buzení alternátoru.
- Zkontrolujte všechny režimy měření a regulace regulátoru a veškeré ovládané výstupy.

7. Pokyny k recyklaci

Společnost LEROY-SOMER se zavázala minimalizovat dopady svých výrobních operací a výrobků na životní prostředí po celou dobu jejich životnosti. Za tímto účelem postupujeme v souladu s požadavky systému environmentálního managementu (EMS), který je certifikován podle mezinárodní normy ISO 14001.

Automatické regulátory napětí vyráběné společnostmi LEROY-SOMER a KATO ENGINEERING mají potenciál šetřit energii a (díky zvýšené účinnosti zařízení/procesu) snižovat spotřebu surovin a množství odpadu po celou dlouhou dobu životnosti. V rámci obvyklých použití tyto pozitivní účinky na životní prostředí daleko převažují nad negativními dopady výroby produktu a likvidace po skončení životnosti.

Jakmile však výrobky jednou dosáhnou konce své životnosti, nesmějí být zlikvidovány, ale měly by být recyklovány specializovaným recyklačním centrem elektronických zařízení. Recyklovatelé zjistí, že lze výrobky pro účinnou recyklaci snadno rozebrat na jejich hlavní součásti. Mnohé díly do sebe zapadají a lze je oddělit bez použití nástrojů, zatímco jiné části jsou zajištěny běžnými upevňovacími prvky. Prakticky všechny části výrobku jsou vhodné k recyklaci.

Balení výrobku je kvalitní a lze jej znovu použít. Velké výrobky jsou baleny do dřevěných beden, zatímco menší výrobky přicházejí do lepenkových kartonů, které samy o sobě mají vysoký obsah recyklovaných vláken. Pokud nejsou znovu použity, mohou být tyto obaly recyklovány. Polyetylen používaný jako ochranná fólie a jako sáčky pro balení výrobku lze recyklovat stejným způsobem. Pokud se chystáte recyklovat nebo zlikvidovat jakýkoli výrobek nebo obal, řiďte se místní legislativou a použijte osvědčené postupy.

8. PŘÍLOHA

8.1. Permutace vektoru

Pokud se alternátor otáčí proti směru hodinových ručiček (nestandardní směr otáčení), lze k opravě výsledných nesprávných výpočtů výkonu a účiníku použít následující permutace vektoru.

Je proto nezbytné upravit zapojení regulátoru D550. Následující tabulka uvádí permutace na základě použitého zapojení.

	Měření napětí alternátoru								
(a/c IEC 60034-1)	Svorky regulátoru	U	v	w					
	Fáze alternátoru (třífázové měření)	U	V	W					
Ve směru hodinových ručiček	Fáze alternátoru (jednofázové měření fáze/fáze)	-	V	W					
	Fáze alternátoru (jednofázové měření fáze/fáze)	U	-	W					
	Fáze alternátoru (třífázové měření)	W	V	U					
Proti směru hodinových ručiček	Fáze alternátoru (jednofázové měření fáze/fáze)	-	V	U					
	Fáze alternátoru (jednofázové měření fáze/fáze)	W	-	U					

		Měření napětí alternátoru				Konfigurace		
Pozice CT pro měření proudu statoru	alternátoru (a/c IEC 60034-1)	Svorky regulátoru	U	v	w	Typ měření proudu	Typ měření napětí	
		Třífázové	U	V	W	GEN_U	U-V-W	
	Ve směru hodinových ručiček	Jednofázové VW	-	V	W	GEN_U	V-W	
		Jednofázové UW	U	-	W	GEN_U	U-W	
Faze U	Proti směru hodinových ručiček	Třífázové	U	W	V	GEN_U	U-V-W	
		Jednofázové VW	-	W	V	GEN_U	V-W	
		Jednofázové UW	W	-	V	GEN_U	U-W	
	Ve směru hodinových ručiček	Třífázové	U	V	W	GEN_V	U-V-W	
		Jednofázové VW	-	V	W	GEN_V	V-W	
		Jednofázové UW	U	-	W	GEN_V	U-W	
Fáze V		Třífázové	W	V	U	GEN_V	U-V-W	
	Proti směru hodinových ručiček	Jednofázové VW		V	U	GEN_V	V-W	
		Jednofázové UW	W		U	GEN_V	U-W	

Electric Power Generation

Instalace a údržba

Digitální regulátor napětí D550

		Měření napětí alternátoru				Konfigurace		
Pozice CT pro měření proudu statoru	Směr otáčení alternátoru (a/c IEC 60034-1)	Svorky regulátoru	U	v	w	Typ měření proudu	Typ měření napětí	
	Ve směru hodinových ručiček Proti směru hodinových ručiček	Třífázové	W	U	V	GEN_U	U-V-W	
		Jednofázové VW		U	V	GEN_U	V-W	
		Jednofázové UW	W		V	GEN_U	U-W	
Faze W		Třífázové	W	V	U	GEN_U	U-V-W	
		Jednofázové VW		V	U	GEN_U	V-W	
		Jednofázové UW	W		U	GEN_U	U-W	

8.2. Priority režimu regulace regulátoru

Digitální regulátor napětí D550

Digitální regulátor napětí D550

Servis a podpora

Naše celosvětová síť více než 80 poboček je vám k službám.

Naše dostupnost na lokální úrovni je zárukou rychlých a účinných oprav, podpory a služeb souvisejících s údržbou.

Svěřte podporu pro údržbu alternátorů odborníkům na výrobu elektrické energie. Naši zaměstnanci v terénu jsou 100% kvalifikováni a zaškoleni ve všech prostředích a na všech druzích strojů.

Fungování alternátorů rozumíme po všech stránkách a poskytujeme služby za nejlepší hodnoty, abychom optimalizovali vaše náklady.

Kde můžeme pomoci:

Kontakty:

Amerika: +1 (507) 625 4011 EMEA: +33 238 609 908 Asie Tichomoří: +65 6250 8488 Čína: +86 591 8837 3010 Indie: +91 806 726 4867

Naskenujte kód nebo přejděte na:

service.epg@leroy-somer.com

www.lrsm.co/support

www.leroy-somer.com/epg

