Installation & maintenance

Three-phase induction motors

LS/LSES, aluminium motors
FLS/FLSES, cast iron motors
PLSES, IP23 drip-proof motors

Part number: 4850 en - 2019.06 / g
**IMPORTANT**

These symbols ⚠️ ⚠️ appear in this document whenever it is important to take special precautions during installation, operation, maintenance or servicing of the motors.

It is essential that electric motors are installed by experienced, qualified and authorized personnel.

In accordance with the main requirements of EU Directives, the safety of people, animals and property should be ensured when fitting the motors into machines.

Particular attention should be given to equipotential ground or earthing connections.

The noise level of the machines, measured under standard conditions, conforms to the requirements of the standard.

⚠️ The following preliminary precautions must be taken before working on any stationary device:
- mains voltage disconnected and no residual voltage present
- careful examination of the causes of the stoppage (blocked transmission - loss of phase - cut-out due to thermal protection - lack of lubrication, etc)
Dear Customer,

You have just acquired a NIDEC LEROY-SOMER motor.

This motor benefits from the experience of one of the largest manufacturers in the world, using state-of-the-art technology in automation, specially selected materials and rigorous quality control. As a result, the regulatory authorities have awarded our motor factories the ISO 9001 - Edition 2015 international certificate.

We thank you for making this choice, and would ask you to read the contents of this manual.

By observing a few essential rules, you will ensure problem-free operation for many years.

NIDEC LEROY-SOMER

CE conformity
Our products can be incorporated into machines subject to the Machinery Directive 2006/42/EC.

NOTE:
NIDEC LEROY-SOMER reserves the right to modify the characteristics of its products at any time in order to incorporate the latest technological developments. The information contained in this document may therefore be changed without notice.
Copyright 2019: NIDEC LEROY-SOMER
This document is the property of NIDEC LEROY-SOMER.
It may not be reproduced in any form without prior authorization.
All brands and models have been registered and patents applied for.
CONTENTS

1 - RECEIPT ........................................................................................................................................................................5
  1.1 - Identification ......................................................................................................................................................5
  1.2 - Storage .........................................................................................................................................................6

2 - ASSEMBLY ................................................................................................................................................................... 6
  2.1 - Checking the insulation ...........................................................................................................................................6
  2.2 - Location - ventilation .........................................................................................................................................7
  2.3 - Coupling ............................................................................................................................................................7
  2.4 - Electrical guidelines .........................................................................................................................................10
  2.5 - Mains connection ..........................................................................................................................................13

3 - ROUTINE MAINTENANCE ........................................................................................................................................16
  3.1 - Greasing ......................................................................................................................................................16
  3.2 - Bearing maintenance .......................................................................................................................................16

4 - PREVENTIVE MAINTENANCE ..................................................................................................................................17

5 - TROUBLESHOOTING GUIDE ....................................................................................................................................18

6 - CORRECTIVE MAINTENANCE: GENERAL .............................................................................................................19
  6.1 - Dismantling the motor ............................................................................................................................................19
  6.2 - Checks before reassembly ....................................................................................................................................19
  6.3 - Mounting the bearings on the shaft ..................................................................................................................19
  6.4 - Reassembling the motor ......................................................................................................................................19
  6.5 - Reassembling the terminal box .......................................................................................................................19

7 - POSITION OF LIFTING RINGS ..................................................................................................................................20

8 - SPARE PARTS ............................................................................................................................................................21

9 - RECYCLING .............................................................................................................................................................21

10 - LS/LSES MOTORS ................................................................................................................................................24
  10.1 - LS/LSES 71 to 160 MP/LR motors ..................................................................................................................24
  10.2 - LS/LSES 160 M/L/LU, 180 MT/LR motors ..................................................................................................26
  10.3 - LS/LSES 180 L/LUR, 200 L/LR/LU, 225 ST/MT/MR, 250 MZ motors .......................................................28
  10.4 - LS/LSES 225 MG, 250 ME/MF, 280 SC/SD/MD, 315 SN motors ..............................................................30
  10.5 - LS/LSES 280 SU/SK/MK, 315 (except SN) motors ..................................................................................32

11 - FLS/FLSES MOTORS .............................................................................................................................................34
  11.1 - FLS/FLSES 80 to 132 motors .........................................................................................................................34
  11.2 - FLS/FLSES 160, 180 MR motors ....................................................................................................................36
  11.3 - FLS/FLSES 180 M/L/LUR, 200 LU, 225 MR/SR motors ..................................................................................38
  11.4 - FLS/FLSES 225 M to 280 motors ....................................................................................................................40
  11.5 - FLS/FLSES 315 to 355 LD motors ..................................................................................................................42

12 - PLSES MOTORS .....................................................................................................................................................44
  12.1 - PLSES 225 MG, 250, 280 SC/SD/MD motors ............................................................................................44
  12.2 - PLSES 280 MG, 315 motors ........................................................................................................................46
  12.3 - PLSES 315 MGU to VLGU, PLSES 355 motors .......................................................................................48
1 - RECEIPT

On receipt of your motor, check that it has not suffered any damage in transit. If there are obvious signs of knocks, contact the carrier (you may be able to claim on their insurance) and after a visual check, turn the motor by hand to detect any malfunction.

1.1 - Identification

As soon as you receive the motor, check that the nameplate on the machine conforms to your order.

1. RECEIPT

On receipt of your motor, check that it has not suffered any damage in transit. If there are obvious signs of knocks, contact the carrier (you may be able to claim on their insurance) and after a visual check, turn the motor by hand to detect any malfunction.

1.1 - Identification

As soon as you receive the motor, check that the nameplate on the machine conforms to your order.

Definition of symbols used on nameplates:

Legal mark of conformity of product to the requirements of European Directives

<table>
<thead>
<tr>
<th>MOT 3 ~</th>
<th>3-phase A.C. motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSES</td>
<td>Series</td>
</tr>
<tr>
<td>112</td>
<td>Frame size</td>
</tr>
<tr>
<td>MU</td>
<td>Housing symbol</td>
</tr>
<tr>
<td>B3</td>
<td>Mounting position</td>
</tr>
</tbody>
</table>

Motor no.

<table>
<thead>
<tr>
<th>123456</th>
<th>Motor batch number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Month of production</td>
</tr>
<tr>
<td>19</td>
<td>Year of production</td>
</tr>
<tr>
<td>001</td>
<td>Serial number</td>
</tr>
<tr>
<td>IE3</td>
<td>Efficiency class</td>
</tr>
<tr>
<td>88.6%</td>
<td>Efficiency at 4/4 load</td>
</tr>
</tbody>
</table>

IP55 IK08: Index of protection

Ins. cl. F: Insulation class F

Ta 40°C: Ambient operating temperature

S1: Duty - Duty (operating) factor

1000m: Max. altitude, without derating

kg: Weight

V: Supply voltage

Hz: Supply frequency

min⁻¹: Revolutions per minute (rpm)

kW: Rated output power

cos ϕ: Power factor

A: Rated current

Δ: Delta connection

Y: Star connection

Bearings

DE: Drive end bearing

NDE: Non drive end bearing

g: Amount of grease at each regreasing (in g)

h: Regreasing interval (in hours)

POLYREX EM103: Type of grease

A: Vibration level

H: Balancing mode

Please quote when ordering spare parts
1.2 - Storage

Prior to commissioning, machines should be stored in a horizontal position:
- Away from humidity: at relative humidity levels greater than 90% the machine insulation can drop very rapidly, to just above zero at around 100%. The state of the anti-rust protection on unpainted parts should be monitored.
For very long storage periods the motor can be placed in a sealed package (for example heat-shrunk plastic) containing sachets of desiccant:
- Away from frequent significant variations in temperature, to avoid the risk of condensation. During storage the drain plugs must be removed to allow condensation water to escape.
- If the area is subject to vibration, try to reduce the effect of this vibration by placing the motor on a damping support (rubber plate or similar) and turn the rotor a fraction of a turn once a fortnight to prevent the bearing rings from becoming marked.
- Do not discard the rotor locking device (where there are roller bearings).

Even if the motor has been stored in the correct conditions, certain checks must be carried out before it is started up:

Greasing

Bearing which cannot be regreased

Maximum storage: 3 years. After this time, replace the bearings (see section 6.3).

Bearing which can be regreased

<table>
<thead>
<tr>
<th>Grease grade 2</th>
<th>Grease grade 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>less than 6 months</td>
<td>less than 1 year</td>
</tr>
<tr>
<td>more than 6 months, less than 1 year</td>
<td>more than 2 years</td>
</tr>
<tr>
<td>more than 1 year, less than 5 years</td>
<td>more than 2 years and</td>
</tr>
<tr>
<td>more than 5 years</td>
<td>more than 2 years</td>
</tr>
</tbody>
</table>

Grease used by NIDEC LEROY-SOMER (see nameplate): - POLYREX EM103

2 - ASSEMBLY

In all cases, compatibility of the motor and its environment must be guaranteed before its installation and also throughout its life.

⚠️ Electric motors are industrial products. They must therefore be installed by qualified, experienced and authorized personnel. The safety of people, animals and property must be ensured when fitting the motors into machines (please refer to current standards).

2.1 - Checking the insulation

⚠️ Before starting the motor, it is advisable to check the insulation between the phases and earth, and between phases.

This check is essential if the motor has been stored for longer than 6 months or if it has been kept in a damp atmosphere. This measurement must be carried out using a megohmmeter at 500V D.C. (do not use a magnetoelectric system).

It is better to carry out an initial test at 30 or 50 volts and if the insulation is greater than 1 megohm, carry out a second test at 500 volts for 60 seconds. The insulation value must be at least 10 megohms in cold state.

If this value cannot be achieved, or if the motor may have been splashed with water or salt spray, or kept for a long period in a very humid place or if it is covered with condensation, it is advisable to dry the stator for 24 hours in a drying oven at a temperature of between 110°C and 120°C.

If it is not possible to place the motor in a drying oven:
- Switch on the motor, with the rotor locked, at 3-phase A.C. voltage reduced to approximately 10% of the rated voltage, for 12 hours (use an induction regulator or a reduction transformer with adjustable outlets).
- Or supply the 3 phases in series with a D.C. current, with the voltage at 1 to 2% of the rated voltage (use a D.C. generator with independent excitation or batteries for motors of less than 22 kW).

- NB: The A.C. current must be monitored using a clamp ammeter, and the D.C. current using a shunt ammeter. This current must not exceed 60% of the rated current.

It is advisable to place a thermometer on the motor housing: if the temperature exceeds 70 °C, reduce the indicated voltage or current by 5% of the original value for every 10° difference. While it is drying, all the motor orifices must be open (terminal box, drain holes).
Prior to commissioning for all motors:
Rotate the motor at no load (no mechanical load) for 2 to 5 minutes, checking that there is no abnormal noise. If there is any abnormal noise, see section 5.

2.2 - Location - ventilation

2.2.1 - TEFV motors
Our motors are cooled in accordance with method IC 411 (standard IEC 60034-6), i.e. «machine cooled by its surface, using the ambient fluid (air) flowing along the machine».
The fan at the non drive end cools the motor. Air is sucked in through the grille of a fan cover (which provides protection against the risk of direct contact with the fan in accordance with standard IEC 60034-5) and blown along the housing fins to ensure thermal equilibrium of the motor whatever the direction of rotation.

2.2.2 - Drip-proof motors
Location ventilation
Our motors are cooled in accordance with method IC 01 (standard IEC 60034-6), i.e. «machine cooled by means of the ambient fluid (air) circulating inside the machine».
A fan at the non-drive end cools the motor. Air is sucked in at the front of the motor and blown along the fan cover to ensure thermal equilibrium of the motor whatever the direction of rotation.

The motor must be installed in an adequately ventilated area, with clearance for the air intake and outlet of at least onequarter of the frame size.
Obstruction (clogging) - even accidental - of the fan cover grille has an adverse effect on motor operation.
In the case of vertical operation with the shaft extension facing down, it is advisable to fit the motor with a drip cover to prevent penetration by any foreign bodies.
It is also necessary to check that the hot air is not being recycled. If it is, pipes must be provided for the intake of cold air and the discharge of hot air, in order prevent abnormal motor temperature rise.
In this case, if the air is not circulated by an auxiliary fan, the dimensions of the pipes must be such that the pressure losses are negligible compared to those of the motor.

Positioning
The motor must be mounted in the position specified on the order, on a base which is rigid enough to prevent distortion and vibration.

Where the motor feet have six fixing holes, it is preferable to use those which correspond to the standard dimensions for the motor power rating (refer to the technical catalogue for induction motors), or, failing that, to those shown at B2.

Ensure there is easy access to the terminal box, the condensation drain plugs and, if appropriate, to the grease nipples.
Use lifting equipment which is compatible with the weight of the motor (indicated on the nameplate).

When the motor is fitted with lifting rings, they are for lifting the motor on its own and must not be used to lift the whole machine after the motor has been fitted to it.
Note 1: When installing a suspended motor, it is essential to provide protection in case the fixing breaks.
Note 2: Never stand on the motor.

2.3 - Coupling
Preparation
Turn the motor by hand before coupling to detect any possible fault due to handling.
Remove any protection from the shaft extension.

Drain off any condensation water which may have formed inside the motor by removing the plugs from the drain holes and fit them back to keep the IP level.

Rotor locking device
For made-to-order motors with roller bearings, remove the rotor locking device.
In exceptional circumstances when the motor has to be moved after the coupling device has been fitted, the rotor must be re-immobilised.
Balancing
Rotating machines are balanced in accordance with standard ISO 8821:
- Half-key when the shaft extension is marked H
- No key when the shaft extension is marked N.
- Full key when the shaft extension is marked F.
and any coupling element (pulley, coupling sleeve, slip-ring, etc) must therefore be balanced accordingly. To find out the motor balancing type, look at its nameplate.

The motors are balanced with a half-key as standard unless otherwise indicated. The coupling balancing will therefore need to be adapted to the motor balancing, and the coupling will need to be adapted to the length of the shaft key; alternatively any visible parts protruding from the key can be machined off. An adapted key can be used.

Failure to follow these recommendations could lead to premature wear of the bearings and invalidate the warranty.

Motor with 2 shaft extensions:
If the second shaft extension is not used, in order to comply with the balancing class, the key or half-key must be fixed firmly in the keyway so that it is not thrown out during rotation (H or F balancing) and must be protected against direct contact.

Precautions
All measures must be taken to ensure protection against the risks which arise when there are rotating parts (coupling sleeve, pulley, belt etc).

If a motor is started up without a coupling device having been fitted, carefully immobilize the key in its location.

Beware of backdriving when the motor is switched off. The appropriate precautions must be taken:
- For pumps, a non-return valve must be installed.
- For mechanical devices, install a backstop or a holding brake. etc..

Tolerances and adjustments
The standard tolerances are applicable to the mechanical characteristics given in our catalogues. They comply fully with the requirements of IEC standard 72-1.
- Users must adhere strictly to the instructions provided by the transmission device supplier.

Avoid impacts which could damage the bearings. Use a spanner and the tapped hole of the shaft end with a special lubricant (e.g. molykote grease) to make it easier to fit the coupling.

The hub of the transmission device must be:
- Fully in contact with the shoulder of the shaft or, if this is missing, against the metal stop ring which forms a labyrinth seal and thus locks the bearing in place (do not crush the seal).
- Longer than the shaft extension (2 to 3 mm) so that it can be tightened using a screw and washer. If it is not, a spacer ring must be inserted without cutting the key (if this ring is large, it must be balanced).
Direct connection using a flexible coupling
Selection of the coupling sleeve should take account of the rated torque to be transmitted and the safety factor dependent on the starting conditions for the electric motor.
The machines must be carefully aligned, so that any lack of concentricity and parallelism in the two coupling halves is compatible with the recommendations of the coupling sleeve manufacturer.
Both parts of the coupling should be provisionally assembled to make it easier to alter their relative position.
Adjust the parallel plane of both shafts using a gauge.
Measure the distance between the two coupling surfaces at one point on the circumference. Rotate them 90°, 180° and 270° in relation to this initial position, and measure each time.
The difference between the two extremes of the value «x» must not exceed 0.05 mm for standard couplings.

To perfect this adjustment and at the same time check the concentricity of the two shafts, fit 2 gauges as shown in the diagram and slowly turn both shafts.
The deviations registered by either shaft will indicate the need for either an axial or radial adjustment if the deviation exceeds 0.05 mm.

Direct connection using a rigid coupling
Both shafts must be aligned so as to adhere to the tolerances of the coupling sleeve manufacturer.
Maintain the minimum distance between the two shaft extensions to allow for expansion of the motor shaft and the load shaft.

<table>
<thead>
<tr>
<th>Ø (mm)</th>
<th>A (mm) min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 to 55</td>
<td>1</td>
</tr>
<tr>
<td>60</td>
<td>1.5</td>
</tr>
<tr>
<td>65</td>
<td>1.5</td>
</tr>
<tr>
<td>75</td>
<td>2</td>
</tr>
<tr>
<td>80</td>
<td>2</td>
</tr>
</tbody>
</table>

Transmission via belt pulleys
The user can choose the diameter of the pulleys.
Cast iron pulleys with a diameter greater than 315 are not recommended for rotation speeds of 3000 min⁻¹.
Flat belts cannot be used for rotation speeds of 3000 min⁻¹ or more.

Positioning the belts
So that the belts can be correctly positioned, allow for possible adjustment of approximately 3% with respect to the calculated distance E.
Force must never be used when fitting the belts.
For notched belts, position the notches in the pulley grooves.

Adjusting the tension of the belts
The tension of the belts must be adjusted very carefully in accordance with the recommendations of the belt supplier and the calculations made when the product was specified.
Reminder:
- Tension too great = unnecessary force on the end shields which could lead to premature wear of the bearing unit (end shield-bearings) and eventually break the shaft.
- Too little tension = vibration (wearing of the bearing unit).

Fixed distance between centers:
Place a belt tensioning pulley on the slack side of the belts:
- Smooth pulley on the outside of the belt
- Grooved pulley on the inside of the belts when using V-belts.

Adjustable distance between centers:
The motor is usually mounted on slide rails, which enables optimum adjustment of the pulley alignment and the belt tension.
Place the slide rails on a perfectly horizontal baseplate.
The lengthways position of the slide rails is determined by the length of the belt, and the crossways position by the pulley of the machine being driven.
Mount the slide rails firmly with the tension screws in the direction shown in the diagram (the slide rail screw on the belt side between the motor and the machine being driven).
Fix the slide rails onto the baseplate and adjust the belt tension as before.
2.4 - Electrical guidelines

2.4.1 - Limiting problems caused by motor starting

In order to protect the installation, any significant temperature rise in the cabling conduits must be prevented, while ensuring that the protection devices do not interrupt starting. Operating problems in other equipment connected to the same supply are due to the voltage drop caused by the current demand on starting - many times greater than the current absorbed by the motor at full load (approximately 7), see the Induction motors technical catalogue ref.5147. Even though the mains supplies increasingly allow D.O.L. starting, the current inrush must be reduced for certain installations. Jolt-free operation and soft starting ensure greater ease of use and an increased lifespan for the machines being driven. The two essential parameters for starting cage induction motors are:
- starting torque
- starting current
The starting torque and the resistive torque determine the starting time. Depending on the load driven, it may be necessary to adapt starting torque and current depending on the mains power supply characteristics.

The five essential modes are:
- D.O.L. starting
- Star/delta starting
- Soft starting with autotransformer
- Soft starting with resistors
- Electronic starting
The «electronic» starting modes control the voltage at the motor terminals during the entire starting phase and enable very soft, jolt-free starting.

2.4.2 - NIDEC LEROY-SOMER «Digistart» electronic starter

This is a multi-function electronic system with a microcontroller, which is used with all 3-phase cage induction motors. It provides soft starting of the motor with:
- Reduction of the starting current
- Gradual, jolt-free acceleration, achieved by controlling the current absorbed by the motor.
After starting, the DIGISTART performs additional motor control functions in its other operating phases: steady state and deceleration.
- 18 to 1600 A models
- Supply: 200 to 690 V
DIGISTART is economical to install, as a fused switch is the only additional device needed.

Optional: Standard slide rails (conforming to standard NFC 51-105)

These steel slide rails are supplied with tension screws and the 4 nuts and bolts for fixing the motor on the slide rails, but the fixing bolts for the slide rails are not supplied.

<table>
<thead>
<tr>
<th>Motor frame size</th>
<th>Type of slide rail</th>
<th>Dimensions</th>
<th>Weight per pair of slide rails (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>G 90/8 PM</td>
<td>A 35 595 40 2.5 50 264 294 13 3</td>
<td></td>
</tr>
<tr>
<td>100, 112 and 132</td>
<td>G 132/10 PM</td>
<td>420 530 49.5 7 60 442 368 405 15 6</td>
<td></td>
</tr>
<tr>
<td>160 and 180</td>
<td>G 180/12 PM</td>
<td>630 686 60.5 7 75 575 475 525 19 11</td>
<td></td>
</tr>
<tr>
<td>200 and 225</td>
<td>G 225/16 PF</td>
<td>800 864 75 28.5 90 - 623 698 24 16</td>
<td></td>
</tr>
<tr>
<td>250 and 280</td>
<td>G 280/20 PF</td>
<td>1000 1072 100 35 112 - 764 864 30 36</td>
<td></td>
</tr>
<tr>
<td>315 and 355</td>
<td>G 355/24 PF</td>
<td>1250 1330 125 36 130 - 946 1064 30 60</td>
<td></td>
</tr>
</tbody>
</table>
2.4.3 - Other control systems

Special precautions need to be taken when standard induction motors are being used for variable speed control, powered by a frequency inverter or voltage controller. For further information, please refer to the Guide to best practices Motor-drive systems ref. 5626 (www.leroy-somer.com).

During prolonged operation at low speed, cooling efficiency is greatly diminished. It is therefore advisable to install a forced ventilation unit that will produce a constant flow of air independently of the motor speed.

In prolonged operation at high speed, the fan may make excessive noise. It is again advisable to install a forced ventilation system.

If the frequency exceeds 50 Hz:

a - Carefully check that all the components on a particular transmission are properly aligned.
b - The voltage remains constant above 50 Hz.
c - The power supplied by the motor up to 60 Hz remains constant (make sure that the power absorbed by the load does not vary differently in this frequency range).
d - Check that the application speed does not exceed the synchronous speed values:
  - 2P → 3600 min⁻¹ motors
  - 4P → 1800 min⁻¹ motors
  - 6P → 1200 min⁻¹ motors
e - For all other frequency and/or voltage limits, additional precautions must be taken for derating, bearings, ventilation, noise, etc: please consult Leroy-Somer.

Check that the vibration level of the assembled machine complies with standard ISO 10816-3.

The user is responsible for protecting the motor and drive equipment from hazardous currents and overvoltages in the winding. For further information, please refer to the Guide to best practices Motor-drive systems ref. 5626 (www.leroy-somer.com).

2.4.4 - Permissible starting times and locked rotor times

The starting times must remain within the limits stated below on condition that the number of starts per hour is 6 or less.

Three successive cold starts and two consecutive warm starts are allowed.

2.4.5 - Earthing (see section 2.5.5)

2.4.6 - Power factor compensation capacitors

Before any work is carried out on the motor or in the cabinet, check that the capacitors are isolated and/or discharged (read the voltage at the terminals).

2.4.7 - Motor protection devices

2.4.7.1 - On-line protection

Adjusting the thermal protection

It should be adjusted to the value of the current read on the motor nameplate for the connected mains voltage and frequency.

Thermal magnetic protection

The motors must be protected by a thermal magnetic device located between the isolating switch and the motor. These protection devices provide total protection of the motor against non-transient overloads.

This device can be accompanied by fused circuit-breakers.

Built-in direct thermal protection

For low rated currents, bimetallic strip-type protection may be used. The line current passes through the strip, which shuts down or restores the supply circuit as necessary. The design of this type of protection allows for manual or automatic reset.

2.4.7.2 - Built-in indirect thermal protection

The motors can be equipped with optional heat sensors. These sensors can be used to monitor temperature changes at “hot spots”:

- overload detection
- cooling check
- Monitoring strategic points for maintenance of the installation
It must be emphasized that these sensors cannot be used to carry out direct adjustments to the motor operating cycles.

<table>
<thead>
<tr>
<th>Type</th>
<th>Operating principle</th>
<th>Operating curve</th>
<th>Breaking capacity (A)</th>
<th>Protection provided</th>
<th>Mounting Number required*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normally closed thermostat</td>
<td>bimetallic strip, indirectly heated operates on opening (O)</td>
<td>![Image]</td>
<td>1.6 at 250 V with cos ϕ 0.6</td>
<td>general surveillance for non-transient overloads</td>
<td>Mounted on control circuit 2 or 3 in series</td>
</tr>
<tr>
<td>PTO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normally open thermostat</td>
<td>bimetallic strip, indirectly heated, contact on closing (F)</td>
<td>![Image]</td>
<td>1.6 at 250 V with cos ϕ 0.6</td>
<td>general surveillance for non-transient overloads</td>
<td>Mounted on control circuit 2 or 3 in parallel</td>
</tr>
<tr>
<td>PTF</td>
<td>Variable non-linear resistor, indirectly heated</td>
<td>![Image]</td>
<td>0</td>
<td>general surveillance for transient overloads</td>
<td>Mounted with associated relay on control circuit 3 in series</td>
</tr>
<tr>
<td>Positive temperature coefficient thermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermocouples</td>
<td>Peltier effect</td>
<td>![Image]</td>
<td>0</td>
<td>continuous surveillance at hot spots at regular intervals</td>
<td>Mounted on control panels with associated reading device (or recording device) 1 per hot spot</td>
</tr>
<tr>
<td>T (T&lt;150°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constantan copper K (T&lt;1000°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper Copper-Nickel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platinum resistance thermometer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT 100</td>
<td>Variable linear resistance, indirectly heated</td>
<td>![Image]</td>
<td>0</td>
<td>high accuracy continuous surveillance at key hot spots</td>
<td>Mounted on control panels with associated reading device (or recording device) 1 per hot spot</td>
</tr>
<tr>
<td>Resistance thermometer</td>
<td>Resistance is depending on the winding temperature</td>
<td>![Image]</td>
<td>0</td>
<td>high accuracy continuous surveillance at key hot spots</td>
<td>Mounted on control panels with associated reading device (or recording device) 1 per hot spot</td>
</tr>
<tr>
<td>PT 1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- NRT: nominal running temperature.
- The NRTs are chosen according to the position of the sensor in the motor and the temperature rise class.
* The number of devices affects the protection of the windings.

**Alarm and early warning**
All protective equipment can be backed up by another type of protection (with different NRTs): The first device will then act as an early warning (light or sound signals given without shutting down the power circuits), and the second device will be the alarm (shutting down the power circuits).

**Protection against condensation: space heaters**
Identification: 1 red label

A glass fibre flexible resistor is fixed on 1 or 2 coil end turns. This resistor heats the machines when stopped and thus prevents condensation inside the machines.
Power supply: 230V single-phase unless otherwise specified by the customer.

⚠️ Warning: Depending on the type of protection, the motor may remain powered-up. Ensure that the mains supply is disconnected before any work is carried out in the terminal box or in the cabinet.

⚠️ Warning: Check that the space heaters are powered down before any work is carried out in the terminal box or in the cabinet.
2.5 - Mains connection

2.5.1 - Terminal box

Placed as standard on the top of the motor near the drive end, for forms IM B3, B5, B14, the terminal box has IP 55 protection. Warning: The position of the terminal box cannot be easily modified, even with flanged motors, as the condensation drain holes must be at the bottom.

Cable gland
The standard position of the cable gland (1) is on the right, seen from the drive end.

If the non-standard position of the cable gland has not been correctly specified on the order, or is no longer suitable, the symmetrical construction of the terminal box enables it to be turned in any of the 4 directions except for position (2) on flange-mounted motors (B5).

A cable gland must never open upwards.
Check that the incoming cables have bends of such a radius as to prevent water from running into the cable gland.

<table>
<thead>
<tr>
<th>Type of cable gland</th>
<th>Ø min. - Ø max. (mm) cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyamide cable gland</td>
<td>Brass cable gland</td>
</tr>
<tr>
<td>ISO M16</td>
<td>5 - 10</td>
</tr>
<tr>
<td>ISO M20</td>
<td>9.5 - 15</td>
</tr>
<tr>
<td>ISO M25</td>
<td>13 - 19</td>
</tr>
<tr>
<td>ISO M32</td>
<td>15 - 25</td>
</tr>
<tr>
<td>ISO M40</td>
<td>21 - 32</td>
</tr>
<tr>
<td>ISO M50</td>
<td>26 - 38</td>
</tr>
<tr>
<td>ISO M63</td>
<td>31 - 34</td>
</tr>
</tbody>
</table>

NB: motors are fitted with plugs or a support plate as standard.
2.5.2 - Cross-section of the power supply cables

The higher the current, the greater the voltage drop in the cables (standard NFC 15.100 or end user’s national standard). The voltage drop should therefore be calculated for the starting current to see if this is suitable for the application.

If the most important criterion is the starting torque (or starting time), the voltage drop should be limited to 3% maximum (the equivalent of a loss of torque of around 6 to 8%). The chart below can be used to select the conductors according to the length of the supply cables and the starting current, in order to limit the voltage drop to 3% maximum.

⚠️ For motors with flying leads, the power supply cable must not be used for handling.
2.5.3 - Connection of the motor-drive unit
When controlling an induction motor by means of a variable speed drive, certain rules must be adhered to in order to guarantee correct system performance. For variable speed applications, follow the recommendations outlined in the Guide to best practices Motor-drive systems ref. 5626, and in the concerned drive manual too.

2.5.4 - Terminal block wiring diagram
All motors are supplied with a wiring diagram in the terminal box*. The connector links required for coupling can be found inside the terminal box.
Single-speed motors are fitted with a block of 6 terminals complying with standard NFC 51 120, with the terminal markings complying with IEC 34 - 8 (or NFC 51 118).

Particular attention must be paid to the information on the nameplate in order to choose the correct type of connection for the supply voltage.

2.5.5 - Direction of rotation
When the motor is powered by U1, V1, W1 or 1U, 1V, 1W from a direct mains supply L1, L2, L3, it turns clockwise when seen from the drive end.
If 2 phases of the power supply are changed over, the motor will run in an anti-clockwise direction (make sure the motor has been designed to run in both directions of rotation).
Warning: motor with backstop: starting in the wrong direction destroys the backstop (see arrow on motor housing).
If the motor is fitted with accessories (thermal protection or space heater), these should be connected on screw dominos or terminal blocks with labelled wires.

2.5.6 - Earth terminal
This is situated inside the terminal box; in some cases, the earth terminal may be situated on one of the feet or on one of the cooling fins (round motors). It is indicated by the symbol: ∞.

It is compulsory to earth the motor. Earthing must be performed in accordance with current regulations (protection of workers).

* If required, this diagram should be obtained from the supplier, specifying the motor type and number (shown on the motor nameplate).

2.5.7 - Connecting the power supply cables to the terminal block
The cables must be fitted with connectors suitable for the cable cross-section and the terminal diameter. They must be crimped in accordance with the connector supplier’s instructions.
Connection must be carried out with connector resting on connector (see the diagrams below):

<table>
<thead>
<tr>
<th>Terminal</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
<th>M8</th>
<th>M10</th>
<th>M12</th>
<th>M14</th>
<th>M16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>1</td>
<td>2.5</td>
<td>4</td>
<td>10</td>
<td>20</td>
<td>35</td>
<td>50</td>
<td>65</td>
</tr>
<tr>
<td>Brass</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>20</td>
<td>-</td>
<td>50</td>
</tr>
</tbody>
</table>

If using cables without connectors, attach some calipers. If any nuts on the brass terminal block are lost, they must be replaced by brass nuts, not steel ones.
When closing the box, ensure that the seal is correctly positioned.

As a general rule, check that no nut, washer or other foreign body has fallen into or come into contact with the winding.
3 - ROUTINE MAINTENANCE

Checks after start-up
After approximately 50 hours' operation, check that the screws fixing the motor and the coupling device are still tight. In the case of chain or belt transmission, check that the tension is correctly adjusted.

Cleaning
To ensure the motor operates correctly, remove any dust or foreign bodies which might clog the cover grille and the housing fins.
Precaution: before carrying out any cleaning operation check that the motor is completely sealed (terminal box, drain holes, etc).
Dry cleaning (vacuuming or compressed air) is always preferable to wet cleaning.

Draining off condensation water
Temperature variations cause condensation to form inside the motor, which must be removed before it adversely affects motor operation.
Condensation drain holes, located at the bottom of the motors (bearing in mind their operating position) are sealed with plugs which must be removed and then replaced every six months (if they were not replaced, the motor degree of protection would no longer be maintained). Clean the orifices and plugs before reassembling them.
Note: In conditions of high humidity and significant temperature variations, a shorter period is recommended.
As long as it poses no risk to the motor protection, the condensation drain plugs can be removed.

3.1 - Greasing

3.1.1 - Type of grease
When the bearings are not greased for life, the type of grease is indicated on the nameplate.
As standard this grease is Polyrex EM103 and we recommend that it is used for subsequent lubrication.

Avoid mixing greases.

3.1.2 - Permanently greased bearings
For LS/LSES and FLS/FLSES ≤ 225 motors, the bearings defined offer long grease life and therefore lubrication for the lifetime of the machines. The grease life according to speed of rotation and ambient temperature is shown in the technical catalogue ref.5147 (www.leroy-somer.com).

3.1.3 - Bearings with grease nipples
The bearings are lubricated in the factory
The end shields are fitted with bearings lubricated by grease nipples such as Tecalemit-Hydraulic M8 x 125. Greasing intervals are available in the technical catalogue ref.5147 (www.leroy-somer.com).

The frequency of lubrication and the quantity and quality of grease are given on the nameplates and these should be referred to in order to ensure correct bearing lubrication.

Even in the event of prolonged storage or downtime, the interval between 2 greasing operations should never exceed 2 years.

3.2 - Bearing maintenance

3.2.1 - Checking the bearings
As soon as you detect any of the following on the motor:
- Abnormal noise or vibration
- Abnormal temperature rise in the bearing even though it has been lubricated correctly,
the condition of the bearings must be checked.

Damaged bearings must be replaced as soon as possible to prevent worse damage to the motor and the equipment being driven.
If one bearing needs to be replaced, the other bearing must also be replaced.
The seals should be changed routinely when the bearings are changed.
The free bearing must allow the rotor shaft to expand (check its identification during dismantling).

3.2.2 - Reconditioning the bearings

Bearings without grease nipples
Dismantle the motor (see section 6.1); remove the old grease and clean the bearings and accessories with degreasing agent.
Fill with new grease: the correct amount of new grease for the bearing is 50% of the free space.

Bearings with grease nipples
Always begin by cleaning the waste grease channel
If using the type of grease stated on the nameplate, remove the covers and clean the grease nipple heads.
If a different grease from that on the nameplate is being used, the motor must be dismantled and the bearings and accessories cleaned with degreasing agent (carefully clean the grease inlet and outlet pipes) to remove the old grease before relubrication.
To ensure correct lubrication, fill the inner free spaces of the bearing retainers, flanges and grease pipes and 30% of the bearing free space.
Then rotate the motor shaft to distribute the grease.

Warning:
Too much grease causes the bearing to overheat (statistics show that more bearings are damaged through too much grease than too little grease).

Important note:
The new grease should be recently manufactured, of equivalent performance and should not contain any impurities (dust, water, etc).
4 - PREVENTIVE MAINTENANCE

Please consult NIDEC LEROY-SOMER who, in its continuous search for ways to help customers, has evaluated numerous methods of preventive maintenance.

The diagram and table below give the recommended equipment to use and the ideal positions to take measurements of all parameters which can affect the operation of the machine, such as eccentricity, vibration, state of bearings, structural problems, electrical problems, etc.

![Diagram of a three-phase induction motor]

<table>
<thead>
<tr>
<th>Detector</th>
<th>Measurement</th>
<th>Measurement points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Accelerometer</td>
<td>For measuring vibrations</td>
<td>● ● ● ● ●</td>
</tr>
<tr>
<td>2 Photo-electric cell</td>
<td>For measuring speed and phase (balancing)</td>
<td></td>
</tr>
<tr>
<td>3 Clamp ammeter</td>
<td>For measuring current (D.C. and 3-phase)</td>
<td>● ● ●</td>
</tr>
<tr>
<td>4 Voltage probe</td>
<td>For measuring voltage</td>
<td>● ● ●</td>
</tr>
<tr>
<td>5 Infra-red probe</td>
<td>For measuring temperature</td>
<td>● ●</td>
</tr>
</tbody>
</table>
# 5 - TROUBLESHOOTING GUIDE

<table>
<thead>
<tr>
<th>Incident</th>
<th>Possible cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal noise</td>
<td>Originating in motor or machine being driven?</td>
<td>Uncouple the motor from the equipment being driven and test the motor on its own</td>
</tr>
<tr>
<td>Noisy motor</td>
<td><strong>The cause is mechanical</strong> if the noise persists after switching off the power supply, with the drive set to «freewheels» mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- vibration</td>
<td>- check that the key conforms to the type of balancing (see section 2.3)</td>
</tr>
<tr>
<td></td>
<td>- damaged bearings</td>
<td>- change the bearings</td>
</tr>
<tr>
<td></td>
<td>- mechanical friction: ventilation, coupling</td>
<td>- check and replace the defective part</td>
</tr>
<tr>
<td></td>
<td><strong>The cause is electrical</strong> if the noise stops after switching off the power supply</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- normal voltage and 3 phases balanced</td>
<td>- check the power supply at the motor terminals</td>
</tr>
<tr>
<td></td>
<td>- abnormal voltage</td>
<td>- check the drive settings</td>
</tr>
<tr>
<td></td>
<td>- phase imbalance</td>
<td>- check the connection of the terminal block and the tightening of the terminals</td>
</tr>
<tr>
<td></td>
<td><strong>Other possible causes:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- incorrect settings</td>
<td>- check the power supply line</td>
</tr>
<tr>
<td></td>
<td>- drive malfunction</td>
<td>- check the winding resistance</td>
</tr>
<tr>
<td>Motor heats abnormally</td>
<td>- faulty ventilation</td>
<td>- refer to the drive manual</td>
</tr>
<tr>
<td></td>
<td>- faulty supply voltage</td>
<td>- check the environment</td>
</tr>
<tr>
<td></td>
<td>- terminal connection fault</td>
<td>- clean the fan cover and the cooling fins</td>
</tr>
<tr>
<td></td>
<td>- overload</td>
<td>- check that the fan is correctly mounted on the shaft</td>
</tr>
<tr>
<td></td>
<td>- partial short-circuit</td>
<td>- check the current consumption in relation to that indicated on the motor nameplate</td>
</tr>
<tr>
<td></td>
<td>- phase imbalance</td>
<td>- check the electrical continuity of the windings and/or the installation</td>
</tr>
<tr>
<td></td>
<td><strong>Other possible causes:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- incorrect settings</td>
<td>- check the winding resistance</td>
</tr>
<tr>
<td></td>
<td>- drive malfunction</td>
<td></td>
</tr>
<tr>
<td>Motor does not start</td>
<td><strong>at no load</strong></td>
<td>When switched off:</td>
</tr>
<tr>
<td></td>
<td>- mechanical locking</td>
<td>- check that rotation of the shaft is locked</td>
</tr>
<tr>
<td></td>
<td>- broken power supply line</td>
<td>- check the fuses, electrical protection, starting device</td>
</tr>
<tr>
<td></td>
<td>- position feedback (drive message)</td>
<td>- check the drive wiring and settings, operation of the position sensor</td>
</tr>
<tr>
<td></td>
<td>- thermal protection</td>
<td>- check</td>
</tr>
<tr>
<td></td>
<td><strong>on load</strong></td>
<td>When switched off:</td>
</tr>
<tr>
<td></td>
<td>- phase imbalance</td>
<td>- check the direction of rotation (phase order)</td>
</tr>
<tr>
<td></td>
<td>- drive</td>
<td>- check the resistance and continuity of the windings</td>
</tr>
<tr>
<td></td>
<td>- position feedback (drive message)</td>
<td>- check the electrical protection</td>
</tr>
<tr>
<td></td>
<td>- thermal protection</td>
<td>- check the settings and sizing (max. current that can be delivered by the drive)</td>
</tr>
<tr>
<td></td>
<td><strong>Position feedback (drive message)</strong></td>
<td>- check the drive wiring and settings, operation of the position sensor</td>
</tr>
<tr>
<td></td>
<td><strong>Thermal protection</strong></td>
<td>- check</td>
</tr>
</tbody>
</table>
6 - CORRECTIVE MAINTENANCE: GENERAL

**CORRECTIVE MAINTENANCE: GENERAL**

First switch off and lock the power supply

- Open the terminal box, mark the wires and their positions
- Disconnect the power supply wires
- Uncouple the motor from the equipment being driven
Always use an extractor to remove any devices mounted on the shaft end of the motor.

6.1 - Dismantling the motor
Refer to the detailed instructions for the relevant motor range (see following pages).
It is advisable to mark the shields in relation to the stator and the direction in which the rotor fan is mounted.

6.2 - Checks before reassembly
**Stator:**
- Remove all dust from the stator.
If the winding needs to be cleaned, a suitable liquid must be used: dielectric and inert on the insulating components and the external finish.
- Check the insulation (see section 2.1) and if necessary, dry it in an oven.
- Clean the spigots thoroughly, and remove all traces of knocks on the mating surfaces if necessary.

**Rotor:**
- Clean and check the bearing running surfaces. If they are damaged, renew the running surfaces or change the rotor.
- Check the condition of the threads, keys and their housings.

**End shields:**
- Clean off any traces of dirt (old grease, accumulated dust, etc).
- Clean the bearing housings and the spigot.
- If necessary, apply anti-flash varnish to the insides of the end shields.
- Carefully clean the bearing retainers and the grease valves (if these are fitted on the motor).

6.3 - Mounting the bearings on the shaft
This operation is extremely important, as the slightest indentation of a ball on the bearing tracks would cause noise and vibration.
Lightly lubricate the running surfaces of the shaft.
There are a number of ways of mounting the bearings correctly:
- **Cold state:** The bearings must be mounted without any impact, using a spanner (do not use a hammer). The force applied must not be transferred to the bearing track. You should therefore use the internal cage for support (taking care not to press on the seal shield for sealed bearings).
- **Hot state:** Heat the bearing to between 80 and 100 °C: in a dryer, an oven or on a heating plate. (A blowtorch or an oil bath must never be used).
After dismantling and reassembling a bearing, all the spaces between the seals and labyrinth seals must be filled with grease in order to prevent the entry of dust and the rusting of machined parts.
See detailed instructions for the relevant motor ranges in the following pages.

6.4 - Reassembling the motor
**Be careful to replace the stator in its original position,** that the stack of laminations is centered correctly (generally with the terminal box facing forward) and the water drain holes are positioned correctly if they are on the housing.

**Tightening the tie rods/screws**
These must be tightened diagonally, to the torque indicated (see below).

<table>
<thead>
<tr>
<th>Type</th>
<th>Rod/screw Ø</th>
<th>Tightening torque N. m ± 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>M4</td>
<td>2.5</td>
</tr>
<tr>
<td>63</td>
<td>M4</td>
<td>2.5</td>
</tr>
<tr>
<td>71</td>
<td>M4</td>
<td>2.5</td>
</tr>
<tr>
<td>80</td>
<td>M5</td>
<td>4</td>
</tr>
<tr>
<td>90</td>
<td>M5</td>
<td>4</td>
</tr>
<tr>
<td>100</td>
<td>M5 or M6</td>
<td>4</td>
</tr>
<tr>
<td>112</td>
<td>M5 or M6</td>
<td>4</td>
</tr>
<tr>
<td>132</td>
<td>M7</td>
<td>10</td>
</tr>
<tr>
<td>160</td>
<td>M8</td>
<td>18</td>
</tr>
<tr>
<td>180 M/L/L/LUR</td>
<td>M8</td>
<td>18</td>
</tr>
<tr>
<td>180 L</td>
<td>M10</td>
<td>25</td>
</tr>
<tr>
<td>200</td>
<td>M10</td>
<td>25</td>
</tr>
<tr>
<td>225 ST/MR/SR</td>
<td>M10</td>
<td>25</td>
</tr>
<tr>
<td>225 MK</td>
<td>M12</td>
<td>44</td>
</tr>
<tr>
<td>250</td>
<td>M12</td>
<td>44</td>
</tr>
<tr>
<td>280</td>
<td>M12</td>
<td>44</td>
</tr>
<tr>
<td>315</td>
<td>M12</td>
<td>44</td>
</tr>
<tr>
<td>315 LK / 355</td>
<td>M16</td>
<td>100</td>
</tr>
<tr>
<td>355 LK / 400</td>
<td>M16</td>
<td>100</td>
</tr>
<tr>
<td>450</td>
<td>M16</td>
<td>100</td>
</tr>
</tbody>
</table>

6.5 - Reassembling the terminal box
Reconnect all the power supply wires in accordance with the diagram or markings made before dismantling.
To ensure the box is properly sealed: check that the cable glands on the box and the cable(s) have been retightened, and ensure that the seal has been correctly positioned before closing. For terminal boxes equipped with a horn (part no. 89 on the exploded views) or/and a cable gland support plate, ensure that the seal has been correctly positioned before closing. Check that the terminal box components are tightened correctly.

**Note:** It is advisable to test the motor at no load
- If necessary, repaint the motor.
- Mount the transmission device on the motor shaft extension and reinstall the motor on the machine to be driven.
7 - POSITION OF LIFTING RINGS

Position of lifting rings for lifting the motor only (not connected to the machine).

Labour regulations stipulate that all loads over 25 kg must be fitted with lifting devices to facilitate handling. The positions of the lifting rings and the minimum dimensions of the loading bars are given below in order to help with preparation for handling the motors. If these precautions are not followed, there is a risk of warping or crushing some equipment such as the terminal box, protective cover or drip cover.

Motors intended for use in the vertical position may be delivered on a pallet in the horizontal position. When the motor is pivoted, the shaft must under no circumstances be allowed to touch the ground, as the bearings may be irreparably damaged. Moreover, additional special precautions must be taken, as the integral motor lifting rings are not designed for pivoting the motor.

• Horizontal position

<table>
<thead>
<tr>
<th>Type</th>
<th>Horizontal position</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>LSES 100 L/LR/LG</td>
<td>150</td>
</tr>
<tr>
<td>LSES 112 M/MR</td>
<td>150</td>
</tr>
<tr>
<td>LSES 112 M/ML</td>
<td>150</td>
</tr>
<tr>
<td>LSES 132 S/SU</td>
<td>150</td>
</tr>
<tr>
<td>LSES 132 M/ML</td>
<td>150</td>
</tr>
<tr>
<td>LSES 160 M/ML</td>
<td>150</td>
</tr>
<tr>
<td>LSES 160 M/MLL/L</td>
<td>150</td>
</tr>
<tr>
<td>LSES 180 M/MLL/L</td>
<td>150</td>
</tr>
<tr>
<td>LSES 200 L/LL</td>
<td>150</td>
</tr>
<tr>
<td>LSES 225 S/M</td>
<td>150</td>
</tr>
<tr>
<td>LSES 225 S/SG/M/MG</td>
<td>150</td>
</tr>
<tr>
<td>LSES 250 M/ML</td>
<td>150</td>
</tr>
<tr>
<td>LSES 250 M/MLL/L</td>
<td>150</td>
</tr>
<tr>
<td>LSES 280 S/M/SD/M/MD</td>
<td>150</td>
</tr>
<tr>
<td>LSES 315 S/M/LA/LB</td>
<td>150</td>
</tr>
<tr>
<td>LSES 315 S/M/SD/M/MD</td>
<td>150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Horizontal position</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>FLSES 100</td>
<td>150</td>
</tr>
<tr>
<td>FLSES 100 LG</td>
<td>150</td>
</tr>
<tr>
<td>FLSES 112</td>
<td>150</td>
</tr>
<tr>
<td>FLSES 132</td>
<td>150</td>
</tr>
<tr>
<td>FLSES 160 M/ML</td>
<td>150</td>
</tr>
<tr>
<td>FLSES 160 M/ML</td>
<td>150</td>
</tr>
<tr>
<td>FLSES 200 L/LL</td>
<td>150</td>
</tr>
<tr>
<td>FLSES 225 S/M</td>
<td>150</td>
</tr>
<tr>
<td>FLSES 225 S/M</td>
<td>150</td>
</tr>
<tr>
<td>FLSES 250 M/ML</td>
<td>150</td>
</tr>
<tr>
<td>FLSES 280</td>
<td>150</td>
</tr>
<tr>
<td>FLSES 315 S/M/SD/M/MD</td>
<td>150</td>
</tr>
<tr>
<td>FLSES 355</td>
<td>150</td>
</tr>
<tr>
<td>FLSES 355 LK</td>
<td>150</td>
</tr>
<tr>
<td>FLSES 400</td>
<td>150</td>
</tr>
<tr>
<td>FLSES 450</td>
<td>150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Horizontal position</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>PLSES 225 MG</td>
<td>310</td>
</tr>
<tr>
<td>PLSES 225 MF/SF</td>
<td>310</td>
</tr>
<tr>
<td>PLSES 280 MD/MGU/SGU</td>
<td>310</td>
</tr>
<tr>
<td>PLSES 315 SUR/MUR/L/LUR</td>
<td>310</td>
</tr>
<tr>
<td>PLSES 315 LG/MGU/VLG/VLGU</td>
<td>310</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Horizontal position</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>PLSES 315 LG/MGU/VLG/VLGU</td>
<td>310</td>
</tr>
</tbody>
</table>
8 - SPARE PARTS

When ordering spare parts, you must indicate the complete motor type, its serial number and the information given on the nameplate (see section 1).

Part numbers can be found on the exploded views and their descriptions in the parts list (section 6).

In the case of flange mounted motors, indicate the type of flange and its dimensions (see below).

Our extensive network of service centers can dispatch the necessary parts without delay.

To ensure that our motors operate correctly and safely, we recommend the use of original manufacturer spare parts.

In the event of failure to comply with this advice, the manufacturer cannot be held responsible for any damage.

9 - RECYCLING

At the end of life, we advise that you contact a salvage company to recycle the various motor components.
DISMANTLING AND REASSEMBLY PROCEDURES

10 - LS/LSES motors .......................... 24 to 33

11 - FLS/FLSES motors .................... 34 to 43

12 - PLSES motors .......................... 44 to 49
10 - LS/LSES MOTORS

10.1 - LS/LSES 71 to 160 MP/LR motors

10.1.1 - Dismantling
- Remove the screws (27) in the case of a metal cover and then take off the cover (13).
- Pull out the fan (7) using a hub remover or 2 levers (for example, 2 screwdrivers) diametrically opposed to one another, using the shield (6) for support.
- Remove the tie rods (14).
- Remove the key (21).
- Using a wooden mallet, tap the shaft on the fan side in order to loosen the drive end shield (5).
- Remove the rotor shaft (3) and the DE shield (5) taking care not to knock the winding.
- Remove the shield on the fan side (6).
- Take out the preloading washer (59) and the seal of the NDE shield (54) for LS/LSES 100, 112 and 132 motors.
- Remove the circlip (60) from flanged motors using angled circlip pliers.
- Separate the DE shield from the rotor shaft.
- The shaft can then be seen with its 2 bearings and, if appropriate, the circlip.
Use a bearing remover to take out the bearings, taking care not to knock the running surfaces of the shaft.

10.1.2 - Reassembling motors without circlip
- Mount the bearings on the rotor shaft.
- Insert the rotor into the stator taking all possible precautions not to knock the winding.
- Mount the DE shield (5).
- For LS/LSES 71 motors, mount the seal (39) with grease beforehand.
- Place the preloading washer (59) in the bearing housing, then mount the NDE shield (6).
- Place the shield seals (39, 54, 308) with grease.
- Mount the fan (7) using a drift to bed it into position.
- Check that the motor turns freely by hand and that there is no radial play.
- Replace the cover (13) and fix it with the screws (27).

10.1.3 - Reassembling motors with flange and circlip
- Mount the DE bearing (30) in the flange (5) using the outer slip-ring for support.
- Fit the circlip (60).
- Mount this assembly on the rotor (3) using the inner slip-ring for support.
- Mount the NDE bearing on the rotor.
- Insert the rotor (3) and shield (5) assembly in the stator taking care not to knock the winding.
- Place the preloading washer (59) in the bearing housing, then mount the NDE shield (6).
- Place the tie rods (14) in position and tighten the nuts diagonally up to the recommended torque (see section 6.4).
- Mount the shield seals (39, 54, 308) with grease.
- Mount the fan (7) using a drift to bed it into position.
- Check that the motor turns freely by hand and that there is no axial play.
- Replace the cover (13) and fix it with the screws (27).
- Replace the key (21).
LS/LSES 71 to 160 MP/LR

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Description</th>
<th>Ref.</th>
<th>Description</th>
<th>Ref.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wound stator</td>
<td>21</td>
<td>Drive end shield shaft extension key</td>
<td>60</td>
<td>Circlip</td>
</tr>
<tr>
<td>2</td>
<td>Frame</td>
<td>26</td>
<td>Nameplate</td>
<td>71a</td>
<td>Plastic terminal box (&lt; or = frame size 112)</td>
</tr>
<tr>
<td>3</td>
<td>Rotor</td>
<td>27</td>
<td>Fan cover screw</td>
<td>71b</td>
<td>Metal terminal box</td>
</tr>
<tr>
<td>5</td>
<td>Drive end shield</td>
<td>30</td>
<td>Drive end bearing</td>
<td>84</td>
<td>Terminal block</td>
</tr>
<tr>
<td>6</td>
<td>Non drive end shield</td>
<td>39</td>
<td>Drive end seal</td>
<td>85</td>
<td>Set screw</td>
</tr>
<tr>
<td>7</td>
<td>Fan</td>
<td>50</td>
<td>Non drive end bearing</td>
<td>98</td>
<td>Connectors</td>
</tr>
<tr>
<td>13</td>
<td>Fan cover</td>
<td>54</td>
<td>NDE weatherproof seal</td>
<td>508</td>
<td>Terminal box plug</td>
</tr>
<tr>
<td>14</td>
<td>Tie rods</td>
<td>59</td>
<td>Preloading (wavy) washer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10.2 - LS/LSES 160 M/L/LU, 180 MT/LR motors

10.2.1 - Dismantling
- Remove the screws (27) and then take off the cover (13).
- Pull out the fan (7) using a hub remover or 2 levers diametrically opposed to one another, using the shield (6) for support.
- Take out the key (21) and remove the seals (39 and 54 for foot mounted motors) (54 for flange mounted motors).
- Remove the mounting screws (14).
- Unscrew the inner bearing retainer (33) fixing screws (40) when using a flange mounted motor or if the drive end bearing is locked.
- Using a bronze drift, remove the shields (5 and 6) by tapping gently on the shield bosses. Recover the preloading washer (59).
- Remove the circlip (38) if necessary (flange mounted motor).
- Remove the rotor (3) from the stator (1) taking care not to touch the winding.
- Take out the bearings (30) and (50) using a bearing remover, while protecting the end of the shaft extension with a washer. Avoid knocking the running surfaces of the shaft.

10.2.2 - Reassembly
- See section 6.1 before reassembly.
- If necessary, insert the inner bearing retainer (33) at the rotor drive end, then mount new bearings on the shaft, see section 6.3 mounting bearings.
- Mount the circlip (38) for flange mounted motors.
- Insert the rotor (3) in the stator (1) taking care not to knock the winding.
- Position the preloading washer (59) with a small amount of grease in the back of the bearing cage of the NDE shield (6), then remount the NDE shield (6), positioning it on the stator.
- If there is a bearing retainer (33), screw a rod with the same thread diameter as the screws (40) into one of the tapped holes of the bearing retainer to maintain its angular position when remounting the DE shield (5).
- Remount the shield (5) taking care to allow for the positioning of a bearing retainer if used.
- Place the mounting screws (14) in position and tighten the nuts diagonally up to the recommended torque (see section 6.1).
- If necessary, fix the bearing retainer (33) with its own screws.
- Mount the shield seals with grease: (54 at the non drive end) (39 at the drive end for foot mounted motors).
- Mount the fan (7) using a drift to bed it into position.
- Check that the rotor turns freely by hand (that there is no axial play if there is a locked end shield).
- Replace the cover (13) and fix it with the screws (27).
- Replace the key (21).
LS/LSES MOTORS

LS/LSES 160 M/L/LU, 180 MT/LR

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Description</th>
<th>Ref.</th>
<th>Description</th>
<th>Ref.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wound stator</td>
<td>30</td>
<td>Drive end bearing</td>
<td>271</td>
<td>Drive end shield fixing nut</td>
</tr>
<tr>
<td>2</td>
<td>Frame</td>
<td>33</td>
<td>Inner drive end bearing retainer</td>
<td>272</td>
<td>DE shield washer</td>
</tr>
<tr>
<td>3</td>
<td>Shaft</td>
<td>38</td>
<td>Snap ring for drive end shaft</td>
<td>273</td>
<td>Non drive end shield fixing screw</td>
</tr>
<tr>
<td>4</td>
<td>Rotor</td>
<td>39</td>
<td>Drive end seal</td>
<td>274</td>
<td>NDE shield fixing nut</td>
</tr>
<tr>
<td>5</td>
<td>Drive end shield</td>
<td>40</td>
<td>Drive end cover fixing screw</td>
<td>308</td>
<td>Cover fixing washer</td>
</tr>
<tr>
<td>6</td>
<td>Non drive end shield</td>
<td>41</td>
<td>Leaktight toothed lock washer for DE bearing retainer</td>
<td>466</td>
<td>Snap ring for fan</td>
</tr>
<tr>
<td>7</td>
<td>Fan</td>
<td>50</td>
<td>Non drive end bearing</td>
<td>508</td>
<td>Terminal box plug</td>
</tr>
<tr>
<td>8</td>
<td>Fan key</td>
<td>54</td>
<td>NDE weatherproof seal</td>
<td>509</td>
<td>Cable gland seal</td>
</tr>
<tr>
<td>13</td>
<td>Fan cover</td>
<td>59</td>
<td>Preloading (wavy) washer</td>
<td>533</td>
<td>Cover shock mount</td>
</tr>
<tr>
<td>21</td>
<td>Drive end shield shaft extension key</td>
<td>70</td>
<td>Terminal box</td>
<td>629</td>
<td>Draining plug</td>
</tr>
<tr>
<td>26</td>
<td>Nameplate</td>
<td>74</td>
<td>Terminal box lid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Fan cover screw</td>
<td>270</td>
<td>Drive end shield fixing screw</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Installation and maintenance - Three-phase induction motors
4850 en - 2019.06 / g
10.3 - LS/LSES 180 L/LUR, 200 L/LR/LU, 225 ST/MT/MR, 250 MZ motors

10.3.1 - Dismantling
- Remove the screws (27) and then take off the cover (13).
- Pull out the fan (7) using a hub remover or 2 levers diametrically opposed to one another, using the shield (6) for support.
- Take out the key (21) and remove the seals (39 and 54 for foot mounted motors) (54 for flange mounted motors).
- Remove the mounting screws (270 + 273).
- Unscrew the inner bearing retainer (33) fixing screws (40) when using a flange mounted motor or if the drive end bearing is locked.
- Using a bronze drift, remove the shields (5 and 6) by tapping gently on the shield bosses. Recover the preloading washer (59).
- Remove the rotor (3) from the stator (1) taking care not to touch the winding.
- Take out the bearings (30) and (50) using a bearing remover, while protecting the end of the shaft extension with a washer. Avoid knocking the running surfaces of the shaft.

10.3.2 - Reassembly
- See section 6.1 before reassembly.
- If necessary, insert the inner bearing retainer (33) at the rotor drive end, then mount new bearings on the shaft, see section 6.3 mounting bearings.
- Fill with new grease: the correct amount of new grease for the bearing is 50% of the free space.
- Mount the circlip (38) if necessary.
- Insert the rotor (3) in the stator (1) taking care not to knock the winding.
- Position the preloading washer (59) with a small amount of grease in the back of the bearing cage of the NDE shield (6), then remount the NDE shield (6), positioning it on the stator.
- If there is a bearing retainer (33), screw a rod with the same thread diameter as the screws (40) into one of the tapped holes of the bearing retainer to maintain its angular position when remounting the DE shield (5).
- Remount the shield (5) taking care to allow for the positioning of a bearing retainer if used.
- Place the mounting screws (14) in position and tighten the nuts diagonally up to the recommended torque (see section 6.1).
- If necessary, fix the bearing retainer (33) with the screws (40).
- Mount the shield seals with grease: (54 at the non drive end) (39 at the drive end for foot mounted motors).
- Mount the fan (7) using a drift to bed it into position.
- Check that the rotor turns freely by hand (that there is no axial play if there is a locked end shield).
- Replace the cover (13) and fix it with the screws (27).
- Replace the key (21).
## LS/LSES 180 L/LUR, 200 L/LR/LU, 225 ST/MT/MR, 250 MZ

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Description</th>
<th>Ref.</th>
<th>Description</th>
<th>Ref.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wound stator</td>
<td>29</td>
<td>Lifting ring fixing washer</td>
<td>271</td>
<td>Drive end shield fixing nut</td>
</tr>
<tr>
<td>2</td>
<td>Frame</td>
<td>30</td>
<td>Drive end bearing</td>
<td>272</td>
<td>DE shield washer</td>
</tr>
<tr>
<td>3</td>
<td>Shaft</td>
<td>33</td>
<td>Inner drive end bearing retainer</td>
<td>273</td>
<td>Non drive end shield fixing screw</td>
</tr>
<tr>
<td>4</td>
<td>Rotor</td>
<td>38</td>
<td>Snap ring for drive end shaft</td>
<td>275</td>
<td>Fixing washer for NDE shield</td>
</tr>
<tr>
<td>5</td>
<td>Drive end shield</td>
<td>39</td>
<td>Drive end seal</td>
<td>319</td>
<td>Right foot</td>
</tr>
<tr>
<td>6</td>
<td>Non drive end shield</td>
<td>40</td>
<td>Drive end cover fixing screw</td>
<td>320</td>
<td>Left foot</td>
</tr>
<tr>
<td>7</td>
<td>Fan</td>
<td>41</td>
<td>Leaktight toothed lock washer for DE bearing retainer</td>
<td>321</td>
<td>Screws for feet</td>
</tr>
<tr>
<td>8</td>
<td>Fan key</td>
<td>42</td>
<td>Drive end grease nipples</td>
<td>322</td>
<td>Nut for feet</td>
</tr>
<tr>
<td>13</td>
<td>Fan cover</td>
<td>50</td>
<td>Non drive end bearing</td>
<td>323</td>
<td>Washer for feet</td>
</tr>
<tr>
<td>21</td>
<td>Drive end shield shaft extension key</td>
<td>54</td>
<td>NDE weatherproof seal</td>
<td>466</td>
<td>Snap ring for fan</td>
</tr>
<tr>
<td>25</td>
<td>Lifting ring</td>
<td>59</td>
<td>Preloading (wavy) washer</td>
<td>508</td>
<td>Terminal box plug</td>
</tr>
<tr>
<td>26</td>
<td>Nameplate</td>
<td>70</td>
<td>Terminal box</td>
<td>556</td>
<td>NDE bearing circlip</td>
</tr>
<tr>
<td>27</td>
<td>Fan cover screw</td>
<td>74</td>
<td>Terminal box lid</td>
<td>629</td>
<td>Draining plug</td>
</tr>
<tr>
<td>28</td>
<td>Lifting ring fixing screw</td>
<td>270</td>
<td>Drive end shield fixing screw</td>
<td>643</td>
<td>DE grease draining plug</td>
</tr>
</tbody>
</table>
10.4 - LS/LSES 225 MG, 250 ME/MF, 280 SC/MC/SD/MD, 315 SN motors

10.4.1 - Dismantling
- Remove the screws (27), the grease nipple (42) and its extension, then take off the cover (13).
- Pull out the fan (7) using a hub remover or 2 levers diametrically opposed to one another, using the shield (6) for support.
- Take out the key (21).
- Remove the mounting screws (270 + 273).
- Uncrew the DE bearing retainer (33) fixing screws (40) and NDE bearing retainer (52) and (53) fixing screws (62), and remove them.
- Using a bronze drift, remove the shields (5 and 6) by tapping gently on the shield bosses. Recover the preloading washer (59).
- Remove circlips (38) and (60).
- Remove the rotor (3) from the stator (1), taking care not to touch the winding with the inner bearing retainer.
- Take out the bearings (30) and (50) using a bearing remover, while protecting the end of the shaft extension with a washer. Avoid knocking the running surfaces of the shaft.
- The bearings are removed either separately or with the bearing retainers; to avoid damaging the bearing retainers, heat the outer bearing retainer to make it easier to dismantle (the bearing should be discarded).

10.4.2 - Reassembly
- See section 6.1 before reassembly.
- Insert the inner bearing retainer (33) at the rotor drive end and the inner bearing retainer (53) at the non drive end.
- Add new grease: the correct amount of new grease for the bearing is 50% of the free space.
- Mount the new bearings on the shaft, see section 6.3 on mounting bearings.
- Mount the circlips (38) and (60).
- Insert the rotor (3) in the stator (1) taking care not to knock the winding.
- Screw a rod with the same thread diameter as the screws (40 and 62) into one of the tapped holes of the bearing retainers (33 and 53) to maintain their position and that of the grease nipple when remounting the shields (5 and 6).
- Position the preloading washer (59) with a small amount of grease in the back of the bearing cage of the NDE shield (6), then remount the NDE shield (6), positioning it on the stator.
- Fit the seal (54), the outer bearing retainer (52) and the locking screws (62) for the bearing retainers (52, 53).
- Mount the shield (5) taking care to allow for the positioning of the bearing retainer.
- Place the mounting screws (14), tighten the nuts diagonally without locking them so that the feet of the protective cover can be positioned when it is mounted.
- At the drive end fit the seal (39), insert the bearing retainer (32) and the locking screws (40) for the bearing retainer.
- Mount the fan (7) using a drift to bed it in position or by heating the hub of the aluminium fan to approximately 100°C.
- Check that the motor turns freely by hand and that there is no axial play.
- Replace the cover (13), fixing it with the screws (27).
- Replace the grease nipple (42) and extension.
- Tighten the rod nuts (14) diagonally up to the torque recommended in section 6.1.
- Replace the key (21).
### Ref. | Description | Ref. | Description | Ref. | Description
---|---|---|---|---|---
1 | Wound stator | 38 | Snap ring for drive end shaft | 92 | Terminal box baseplate
2 | Frame | 39 | Drive end seal | 270 | Drive end shield fixing screw
3 | Shaft | 40 | Drive end cover fixing screw | 272 | DE shield washer
4 | Rotor | 41 | Leaktight toothed lock washer for DE bearing retainer | 273 | Non drive end shield fixing screw
5 | Drive end shield | 42 | Drive end grease nipples | 275 | Fixing washer for NDE shield
6 | Non drive end shield | 50 | Non drive end bearing | 427 | Cover plug
7 | Fan | 53 | Inner non drive end bearing retainer | 466 | Snap ring for fan
8 | Fan key | 54 | NDE weatherproof seal | 468 | Earth terminal plug
13 | Fan cover | 59 | Preloading (wavy) washer | 508 | Terminal box plug
21 | Drive end shield shaft extension key | 62 | Cover fixing screw | 533 | Cover shock mount
26 | Nameplate | 63 | Fixing washer for NDE bearing retainer | 629 | Draining plug
27 | Fan cover screw | 64 | Non drive end grease nipple | 643 | DE grease draining plug
30 | Drive end bearing | 70 | Terminal box | 645 | NDE grease draining plug
33 | Inner drive end bearing retainer | 74 | Terminal box lid |
10.5 - LS/LSES 280 SU/SK/MK, 315 (except SN) motors

10.5.1 - Dismantling
- Remove the screws (27), the grease nipple (42) and its extension, then take off the cover (13).
- Pull out the fan (7) using a hub remover or 2 diametrically opposed levers, using the shield (6) for support; for an aluminium fan, heat the hub to approximately 100°C before removing it.
- Take out the key (21).
- Unscrew the tie rods (14) then remove them.
- Unscrew the DE bearing retainer (33) fixing screws (40) and NDE bearing retainer (32) and (52) fixing screws (62), and remove the bearing retainers.
- Unscrew the «CHc» screws of the mobile valves (35 and 56) then unscrew the valves using a hook spanner or a conical bronze drift; unscrew the valves by hand and remove them. The valves hold the seal (39 and 54).
- Remove the fixed valves (34 and 35) from the bearing housings.
- Using a bronze drift, remove the shields (5 and 6) by tapping gently on the shield bosses.
- Check that the bearing retainer (53) is smaller in diameter than the stator, otherwise remove the bearing (50) as per the following instructions.
- Remove the rotor (3) from the stator (1) at the drive end, taking care not to touch the winding with the inner bearing retainer if there is no internal turbine.
- Take out the bearings (30) and (50) using a bearing remover, while protecting the end of the shaft extension with a washer. Avoid knocking the running surfaces of the shaft.
- The bearings are removed either separately or with the bearing retainers (33 and 53); to avoid damaging the bearing retainers, heat the outer bearing ring (the bearing should be discarded).
- Recover the preloading washer or springs (59) from the bearing retainer (53).

10.5.2 - Reassembly
- See section 6.1 before reassembly.
- Insert the inner bearing retainer (33) at the rotor drive end and the inner bearing retainer (53) at the non drive end, not forgetting to insert the preloading springs (59).
- Add new grease: the correct amount of new grease for the bearing is 50% of the free space.
- Mount the new bearings (30 and 50) on the shaft, see section 6.3 on mounting bearings.
- Insert the rotor (3) in the stator (1) taking care not to knock the winding.
- Screw a rod with the same thread diameter as the screws (40) and (62) into one of the tapped holes of the bearing retainers (33) and (53) to maintain the position of the grease nipple when remounting the shields (5 and 6).
- Check that the preloading springs are properly installed.
- Fit the NDE shield (6), positioning it on the stator, then mount the fixed valve (55) in the shield bearing housing.
- Mount the mobile valve (56) by either screwing it or locking it, having carefully installed the seal (54) on the valve.
- Mount the outer bearing retainer (52) with the bearing retainer locking screws (62), making sure that the grease drain hole is at the bottom.
- Mount the shield (5) at the drive end, positioning it on the stator, then mount the fixed valve (34) in the shield bearing housing.
- Mount the mobile valve (35) by either screwing it or locking it, having carefully installed the seal (39) on the valve.
- Mount the outer bearing retainer (32) with the bearing retainer locking screws (40), making sure that the grease drain hole is at the bottom.
- Put the tie rods (14) in place, not forgetting the feet of the protective cover (380), tighten the nuts diagonally without locking them so that the feet of the protective cover can be positioned when it is mounted.
- Mount the fan (7) using a drift to bed it in position or by heating the hub of the aluminium fan to approximately 100°C.
- Check that the motor turns freely by hand and that there is no axial play.
- Replace the protective cover (13) and fix it with the screws (27), replace the grease nipple (42) and its extension.
- Tighten the rod nuts (14), always diagonally, up to the torque recommended in section 6.1.
- Replace the key (21).
### LS/LSES 280 SU/SK/MK, 315 (except SN)

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Description</th>
<th>Ref.</th>
<th>Description</th>
<th>Ref.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wound stator</td>
<td>30</td>
<td>Drive end bearing</td>
<td>53</td>
<td>Inner non drive end bearing retainer</td>
</tr>
<tr>
<td>2</td>
<td>Frame</td>
<td>32</td>
<td>Outer drive end bearing retainer</td>
<td>54</td>
<td>NDE weatherproof seal</td>
</tr>
<tr>
<td>3</td>
<td>Rotor</td>
<td>33</td>
<td>Inner drive end bearing retainer</td>
<td>55</td>
<td>Non drive end fixed grease valve</td>
</tr>
<tr>
<td>5</td>
<td>Drive end shield</td>
<td>34</td>
<td>Drive end fixed grease valve</td>
<td>56</td>
<td>Non drive end mobile grease valve</td>
</tr>
<tr>
<td>6</td>
<td>Non drive end shield</td>
<td>35</td>
<td>Drive end mobile grease valve</td>
<td>59</td>
<td>Preloading washer or spring</td>
</tr>
<tr>
<td>7</td>
<td>Fan</td>
<td>39</td>
<td>Drive end seal</td>
<td>62</td>
<td>Cover fixing screw</td>
</tr>
<tr>
<td>13</td>
<td>Fan cover</td>
<td>40</td>
<td>Drive end cover fixing screw</td>
<td>70</td>
<td>Terminal box</td>
</tr>
<tr>
<td>14</td>
<td>Tie rods</td>
<td>42</td>
<td>Grease nipples</td>
<td>74</td>
<td>Terminal box lid</td>
</tr>
<tr>
<td>21</td>
<td>Shaft extension key</td>
<td>50</td>
<td>Non drive end bearing</td>
<td>81</td>
<td>Cable gland support plate</td>
</tr>
<tr>
<td>27</td>
<td>Fan cover screw</td>
<td>52</td>
<td>Outer non drive end bearing retainer</td>
<td>380</td>
<td>Protective cover feet</td>
</tr>
</tbody>
</table>
11 - FLS/FLSES MOTORS

11.1 - FLS/FLSES 80 to 132 motors

11.1.1 - Dismantling
- Remove the screws (27) and then take off the cover (13).
- Pull out the fan (7) using a hub remover or 2 levers (for example, 2 screwdrivers) diametrically opposed to one another, using the shield (6) for support.
- Remove the tie rods (14).
- Remove the key (21).
- Using a wooden mallet, tap the shaft on the fan side in order to loosen the drive end shield (5).
- Remove the rotor shaft (3) and the DE shield (5) taking care not to knock the winding.
- Remove the shield on the fan side (6).
- Recover the preloading (wavy) washer (59) and the NDE shield seal (54).
- Remove the circlip (60) from flanged motors using angled circlip pliers.
- Separate the DE shield from the rotor shaft.
- The shaft can then be seen with its 2 bearings and, if appropriate, the circlip.

Use a bearing remover to take out the bearings, taking care not to knock the running surfaces of the shaft.

11.1.2 - Reassembling motors without circlip
- Mount the bearings on the rotor shaft.
- Insert the rotor into the stator taking all possible precautions not to knock the winding.
- Mount the DE shield (5).
- Place the preloading washer (59) in the bearing housing, then mount the NDE shield (6).
- Place the tie rods (14) in position and tighten the nuts diagonally up to the recommended torque (see section 6.4).
- Mount the shield seals (39, 54, 308) with grease.
- Mount the fan (7) using a drift to bed it into position.
- Check that the motor turns freely by hand and that there is no radial play.
- Replace the cover (13) and fix it with the screws (27).

11.1.3 - Reassembling motors with flange and circlip
- Mount the DE bearing (30) in the flange (5) using the external slip-ring for support.
- Fit the circlip (60).
- Mount this assembly on the rotor (3) using the inner slip-ring for support.
- Mount the NDE bearing on the rotor.
- Insert the rotor (3) and shield (5) assembly in the stator taking care not to knock the winding.
- Place the preloading washer (59) in the bearing housing, then mount the NDE shield (6).
- Place the tie rods (14) in position and tighten the nuts diagonally up to the recommended torque (see section 6.4).
- Mount the shield seals (39, 54, 308) with grease.
- Mount the fan (7) using a drift to bed it into position.
- Check that the motor turns freely by hand and that there is no axial play.
- Replace the cover (13) and fix it with the screws (27).
- Replace the key (21).
**FLS/FLSES MOTORS**

**FLS/FLSES 80 to 132**

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Description</th>
<th>Ref.</th>
<th>Description</th>
<th>Ref.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wound stator</td>
<td>21</td>
<td>Shaft extension key</td>
<td>60</td>
<td>Circlip</td>
</tr>
<tr>
<td>2</td>
<td>Frame</td>
<td>26</td>
<td>Nameplate</td>
<td>71</td>
<td>FLSES terminal box</td>
</tr>
<tr>
<td>3</td>
<td>Rotor</td>
<td>27</td>
<td>Fan cover screw</td>
<td>84</td>
<td>Terminal block</td>
</tr>
<tr>
<td>5</td>
<td>Drive end shield</td>
<td>30</td>
<td>Drive end bearing</td>
<td>85</td>
<td>Set screw</td>
</tr>
<tr>
<td>6</td>
<td>Non drive end shield</td>
<td>39</td>
<td>Drive end seal</td>
<td>98</td>
<td>Connectors</td>
</tr>
<tr>
<td>7</td>
<td>Fan</td>
<td>50</td>
<td>Non drive end bearing</td>
<td>308</td>
<td>Labyrinth seal</td>
</tr>
<tr>
<td>13</td>
<td>Fan cover</td>
<td>54</td>
<td>NDE weatherproof seal</td>
<td>508</td>
<td>Terminal box plug</td>
</tr>
<tr>
<td>14</td>
<td>Tie rods</td>
<td>59</td>
<td>Preloading (wavy) washer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
11.2 - FLS/FLSES 160, 180 MR motors

11.2.1 - Dismantling
- Remove the screws (27) and then take off the cover (13).
- Pull out the fan (7) using a hub remover or 2 levers diametrically opposed to one another, using the shield (6) for support.
- Take out the key (21) and remove the seals (39 and 54 for foot mounted motors) (54 for flange mounted motors).
- Remove the mounting screws (270 + 273).
- Unscrew the inner bearing retainer (33) fixing screws (40) when using a flange mounted motor or if the drive end bearing is locked.
- Using a bronze drift, remove the shields (5 and 6) by tapping gently on the shield bosses. Recover the preloading washer (59).
- Remove the circlip (38) if necessary (flange mounted motor).
- Remove the rotor (3) from the stator (1) taking care not to touch the winding.
- Take out the bearings (30) and (50) using a bearing remover, while protecting the end of the shaft extension with a washer. Avoid knocking the running surfaces of the shaft.

11.2.2 - Reassembly
- See section 6.1 before reassembly.
- If necessary, insert the inner bearing retainer (33) at the rotor drive end, then mount new bearings on the shaft, see section 6.3 mounting bearings.
- Mount the circlip (38) for flange mounted motors.
- Insert the rotor (3) in the stator (1) taking care not to knock the winding.
- Position the preloading washer (59) with a small amount of grease in the back of the bearing cage of the NDE shield (6), then remount the NDE shield (6), positioning it on the stator.
- If there is a bearing retainer (33), screw a rod with the same thread diameter as the screws (40) into one of the tapped holes of the bearing retainer to maintain its angular position when remounting the DE shield (5).
- Remount the shield (5) taking care to allow for the positioning of a bearing retainer if used.
- Place the mounting screws (14) in position and tighten the nuts diagonally up to the recommended torque (see section 6.1).
- If necessary, fix the bearing retainer (33) with its own screws.
- Mount the shield seals with grease. (54 at the non drive end) (39 at the drive end for foot mounted motors).
- Mount the fan (7) using a drift to bed it into position.
- Check that the rotor turns freely by hand (that there is no axial play if there is a locked end shield).
- Replace the cover (13) and fix it with the screws (27).
- Replace the key (21).
### FLS/FLSES 160, 180 MR

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Description</th>
<th>Ref.</th>
<th>Description</th>
<th>Ref.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wound stator</td>
<td>27</td>
<td>Fan cover screw</td>
<td>74</td>
<td>Terminal box lid</td>
</tr>
<tr>
<td>2</td>
<td>Frame</td>
<td>30</td>
<td>Drive end bearing</td>
<td>81</td>
<td>Cable gland support plate</td>
</tr>
<tr>
<td>3</td>
<td>Shaft</td>
<td>33</td>
<td>Inner drive end bearing retainer</td>
<td>270</td>
<td>Drive end shield fixing screw</td>
</tr>
<tr>
<td>4</td>
<td>Rotor</td>
<td>38</td>
<td>Snap ring for drive end shaft</td>
<td>271</td>
<td>Drive end shield fixing nut</td>
</tr>
<tr>
<td>5</td>
<td>Drive end shield</td>
<td>39</td>
<td>Drive end seal</td>
<td>272</td>
<td>DE shield washer</td>
</tr>
<tr>
<td>6</td>
<td>Non drive end shield</td>
<td>40</td>
<td>Drive end cover fixing screw</td>
<td>273</td>
<td>Non drive end shield fixing screw</td>
</tr>
<tr>
<td>7</td>
<td>Fan</td>
<td>41</td>
<td>Leaktight toothed lock washer for DE bearing retainer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Fan key</td>
<td>50</td>
<td>Non drive end bearing</td>
<td>466</td>
<td>Snap ring for fan</td>
</tr>
<tr>
<td>13</td>
<td>Fan cover</td>
<td>54</td>
<td>NDE weatherproof seal</td>
<td>533</td>
<td>Cover shock mount</td>
</tr>
<tr>
<td>21</td>
<td>Drive end shield shaft extension key</td>
<td>59</td>
<td>Preloading (wavy) washer</td>
<td>629</td>
<td>Draining plug</td>
</tr>
<tr>
<td>26</td>
<td>Nameplate</td>
<td>70</td>
<td>Terminal box</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
11.3 - FLS/FLSES 180 M/L/LUR, 200 LU, 225 MR/SR motors

11.3.1 - Dismantling

- Remove the screws (27) and then take off the cover (13).
- Pull out the fan (7) using a hub remover or 2 levers diametrically opposed to one another, using the shield (6) for support.
- Take out the key (21) and remove the seals (39 and 54 for foot mounted motors) (54 for flange mounted motors).
- Remove the mounting screws (270 + 273).
- Unscrew the inner bearing retainer (33) fixing screws (40) when using a flange mounted motor or if the drive end bearing is locked.
- Using a bronze drift, remove the shields (5 and 6) by tapping gently on the shield bosses. Recover the preloading washer (59).
- Remove the circlip (38) if necessary (flange mounted motor).
- Remove the rotor (3) from the stator (1) taking care not to touch the winding.
- Take out the bearings (30) and (50) using a bearing remover, while protecting the end of the shaft extension with a washer. Avoid knocking the running surfaces of the shaft.

11.3.2 - Reassembly

- See section 6.1 before reassembly.
- If necessary, insert the inner bearing retainer (33) at the rotor drive end, then mount new bearings on the shaft, see section 6.3 mounting bearings.
- Mount the circlip (38) for flange mounted motors.
- Insert the rotor (3) in the stator (1) taking care not to knock the winding.
- Position the preloading washer (59) with a small amount of grease in the back of the bearing cage of the NDE shield (6), then remount the NDE shield (6), positioning it on the stator.
- If there is a bearing retainer (33), screw a rod with the same thread diameter as the screws (40) into one of the tapped holes of the bearing retainer to maintain its angular position when remounting the DE shield (5).
- Remount the shield (5) taking care to allow for the positioning of a bearing retainer if used.
- Place the mounting screws (14) in position and tighten the nuts diagonally up to the recommended torque (see section 6.1).
- If necessary, fix the bearing retainer (33) with its own screws.
- Mount the shield seals with grease: (54 at the non drive end) (39 at the drive end for foot mounted motors).
- Mount the fan (7) using a drift to bed it into position.
- Check that the rotor turns freely by hand (that there is no axial play if there is a locked end shield).
- Replace the cover (13) and fix it with the screws (27).
- Replace the key (21).
### FLS/FLSES 180 M/L/LUR, 200 LU, 225 MR/SR

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Description</th>
<th>Ref.</th>
<th>Description</th>
<th>Ref.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wound stator</td>
<td>30</td>
<td>Drive end bearing</td>
<td>81</td>
<td>Cable gland support plate</td>
</tr>
<tr>
<td>2</td>
<td>Frame</td>
<td>33</td>
<td>Inner drive end bearing retainer</td>
<td>270</td>
<td>Drive end shield fixing screw</td>
</tr>
<tr>
<td>3</td>
<td>Shaft</td>
<td>38</td>
<td>Snap ring for drive end shaft</td>
<td>271</td>
<td>Drive end shield fixing nut</td>
</tr>
<tr>
<td>4</td>
<td>Rotor</td>
<td>39</td>
<td>Drive end seal</td>
<td>272</td>
<td>DE shield washer</td>
</tr>
<tr>
<td>5</td>
<td>Drive end shield</td>
<td>40</td>
<td>Drive end cover fixing screw</td>
<td>273</td>
<td>Non drive end shield fixing screw</td>
</tr>
<tr>
<td>6</td>
<td>Non drive end shield</td>
<td>41</td>
<td>DLE shield lock washer for DE bearing retainer</td>
<td>275</td>
<td>Fixing washer for NDE shield</td>
</tr>
<tr>
<td>7</td>
<td>Fan</td>
<td>42</td>
<td>Drive end grease nipples</td>
<td>466</td>
<td>Snap ring for fan</td>
</tr>
<tr>
<td>8</td>
<td>Fan key</td>
<td>50</td>
<td>Non drive end bearing</td>
<td>556</td>
<td>NDE bearing circlip</td>
</tr>
<tr>
<td>13</td>
<td>Fan cover</td>
<td>54</td>
<td>NDE weatherproof seal</td>
<td>629</td>
<td>Draining plug</td>
</tr>
<tr>
<td>21</td>
<td>Drive end shield shaft extension key</td>
<td>59</td>
<td>Preloading (wavy) washer</td>
<td>643</td>
<td>DE grease draining plug</td>
</tr>
<tr>
<td>26</td>
<td>Nameplate</td>
<td>70</td>
<td>Terminal box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Fan cover screw</td>
<td>74</td>
<td>Terminal box lid</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
11.4 - FLS/FLSES 225 M to 280 motors

11.4.1 - Dismantling the NDE shield
- Remove the fixing screws (27) and then take off the cover (13).
- Remove the shaft extension screw if necessary.
- Take out the fan (7).
- Remove the fixing screws from the inner NDE bearing retainer (53).
- Remove the fixing screws (273) from the NDE shield (6).
- Remove the fan key if appropriate.
- Using two levers or a flexible hammer, disengage the NDE shield (6) taking care not to place it aslant. Remove the shield by sliding it along the shaft.
- Put the dismantled components to one side and recover the preloading washer (59), which should be replaced in its housing.

11.4.2 - Dismantling the DE shield
- Dismantle the DE shield without removing the rotor (3). To do this:
  - Remove the fixing screws (270) from the DE shield (5).
  - Remove the fixing screws (40) from the DE internal cover (33).
  - Take out the key (21).
  - Using two levers or a flexible hammer, disengage the DE shield (5) taking care not to place it aslant.
  - Remove the shield by sliding it along the shaft.

11.4.3 - Changing the antifriction bearings
- Using an appropriate lifting tool, take out the rotor without knocking the winding.
  - Take off the DE circlip (38).
  - Remove the bearings (30) and (50) with an appropriate tool, protecting the end of the shaft extension. Avoid knocking the running surfaces of the shaft.
  - Change the bearings in accordance with the instructions described in the General information in section 6 (shrinkfitting only).

IMPORTANT: Before undertaking any of these procedures, read the «CHECKS BEFORE REASSEMBLY» section.

11.4.4 - Reassembly
- Mount the DE bearing (30) on the rotor shaft (take care not to forget the inner bearing retainer (33) and the circlip (38)), and also the NDE bearing (50) if and only if the stator inner Ø allows the inner NDE bearing retainer (53) to pass through.
  - Insert the rotor into the stator taking care not to knock the winding. Install the NDE bearing if this has not already been done.
  - Fill the decompression grooves (416) located in the shaftway with grease.
  - Present the shields, grease nipples facing upwards. Begin with the DE shield (5). Fix a dowel pin in one of the inner bearing retainer (33) tapped holes so that the grease inlet pipes fully correspond.
  - End with the NDE shield (6). Fix a dowel pin in one of the inner bearing retainer (53) tapped holes so that the grease inlet pipes fully correspond.
  - Lift the rotor slightly and fit the shields in place.

From now on, we recommend checking at every step that the rotor turns freely by hand before continuing to the next instruction.
- Replace the shield fixing screws (270) and (273).
- Insert the fixing screws on the inner bearing retainers (33) and (53). Replace the AZ washers to ensure a perfect seal.
- Replace the fan key if appropriate.
- Replace the fan (7).
- Replace the shaft extension screw if necessary.
- Replace the cover (13) and reinsert the fixing screws (27).
- Lubricate the DE and NDE antifriction bearings, turning the shaft by hand.

Amount of grease for ball bearings:
- Frame size 225 - 250: DE and NDE = 120 cm³
- Frame size 280: DE = 170 cm³ / NDE = 120 cm³
### FLS/FLSES 225 M to 280

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Description</th>
<th>Ref.</th>
<th>Description</th>
<th>Ref.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wound stator</td>
<td>26</td>
<td>Nameplate</td>
<td>69</td>
<td>Terminal box base seal</td>
</tr>
<tr>
<td>2</td>
<td>Frame</td>
<td>27</td>
<td>Fan cover screw</td>
<td>70</td>
<td>Terminal box</td>
</tr>
<tr>
<td>3</td>
<td>Rotor</td>
<td>30</td>
<td>Drive end bearing</td>
<td>74</td>
<td>Terminal box lid</td>
</tr>
<tr>
<td>5</td>
<td>Drive end shield</td>
<td>33</td>
<td>Inner drive end bearing retainer</td>
<td>75</td>
<td>Terminal box lid fixing screw</td>
</tr>
<tr>
<td>6</td>
<td>Non drive end shield</td>
<td>38</td>
<td>Snap ring for drive end shaft</td>
<td>77</td>
<td>Terminal box lid seal</td>
</tr>
<tr>
<td>7</td>
<td>Fan</td>
<td>40</td>
<td>Drive end cover fixing screw</td>
<td>81</td>
<td>Cable gland support plate</td>
</tr>
<tr>
<td>10</td>
<td>Turbine or fan screw</td>
<td>42</td>
<td>Drive end grease ripples</td>
<td>270</td>
<td>Drive end shield fixing screw</td>
</tr>
<tr>
<td>11</td>
<td>Lockwasher</td>
<td>50</td>
<td>Non drive end bearing</td>
<td>271</td>
<td>Drive end shield fixing nut</td>
</tr>
<tr>
<td>12</td>
<td>Lock washer</td>
<td>53</td>
<td>Inner non drive end bearing retainer</td>
<td>273</td>
<td>Non drive end shield fixing screw</td>
</tr>
<tr>
<td>13</td>
<td>Fan cover</td>
<td>59</td>
<td>Preloading (wavy) washer</td>
<td>406</td>
<td>Drive end grease valve cover plate (plug)</td>
</tr>
<tr>
<td>21</td>
<td>Drive end shield shaft extension key</td>
<td>64</td>
<td>Non drive end grease nipple</td>
<td>456</td>
<td>Non drive end grease valve cover plate (plug)</td>
</tr>
</tbody>
</table>
11.5 - FLS/FLSES 315 to 355 LD motors

11.5.1 - Dismantling the NDE shield
- Remove the fixing screws (27) and then take off the cover (13).
- Remove the shaft extension screw if necessary.
- Take out the fan (7).
- Remove the fixing screws from the inner NDE bearing retainer (53).
- Remove the fixing screws (273) from the NDE shield (6).
- Remove the fan key if appropriate.
- Using two levers or a flexible hammer, disengage the NDE shield (6) taking care not to place it aslant. Remove the shield by sliding it along the shaft.
- Put the dismantled components to one side and retrieve the preloading springs (256), which should be replaced in their housing.

11.5.2 - Dismantling the DE shield
- Dismantle the DE shield without removing the rotor (3). To do this:
  - Remove the fixing screws (270) from the DE shield (5).
  - Remove the fixing screws (40) from the DE internal cover (33).
  - Take out the key (21).
  - Using two levers or a flexible hammer, disengage the DE shield (5) taking care not to place it aslant.
  - Remove the shield by sliding it along the shaft.

11.5.3 - Changing the antifriction bearings
- Using an appropriate lifting tool, take out the rotor without knocking the winding.
- Remove the DE (38) and NDE (60) circlips.
- Remove the bearings (30) and (50) with an appropriate tool, protecting the end of the shaft extension. Do not knock the running surfaces of the shaft.
- Change the bearings in accordance with the instructions described in the General information in section 6 (shrinkfitting only).

IMPORTANT : Before undertaking any of these procedures, read the «CHECKS BEFORE REASSEMBLY» section.

11.5.4 - Reassembly
- Mount the DE bearing (30) on the rotor shaft (take care not to forget the inner bearing retainer (33) and the circlip (38)!), and also the NDE bearing (50) if and only if the stator inner Ø allows the inner NDE bearing retainer (53) to pass through, refit the circlip (60), refit the preloading springs in their housing in the inner NDE bearing retainer (53).
- Insert the rotor into the stator taking care not to knock the winding. Install the NDE bearing if this has not already been done.
- Fill the decompression grooves (416) located in the shaftway and the grease inlet pipes with grease.
- Present the shields, grease nipples facing upwards. Begin with the DE shield (5). Fix a dowel pin in one of the inner bearing retainer (33) tapped holes so that the grease inlet pipes fully correspond.
- End with the NDE shield (6). Fix a dowel pin in one of the inner bearing retainer (53) tapped holes so that the grease inlet pipes fully correspond.
- Lift the rotor slightly and fit the shields in place.

Amount of grease for ball bearings:
- Frame size 315 : DE and NDE = 50 g for 4P and + / 35 g for 2P
- Frame size 355 : DE and NDE = 60 g for 4P and + / 35 g for 2P
### FLS/FLSES 315 to 355 LD

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Description</th>
<th>Ref.</th>
<th>Description</th>
<th>Ref.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wound stator</td>
<td>27</td>
<td>Fan cover screw</td>
<td>70</td>
<td>Stator terminal box</td>
</tr>
<tr>
<td>2</td>
<td>Frame</td>
<td>30</td>
<td>Drive end bearing</td>
<td>74</td>
<td>Stator terminal box lid</td>
</tr>
<tr>
<td>3</td>
<td>Shaft</td>
<td>33</td>
<td>Inner drive end bearing retainer</td>
<td>81</td>
<td>Cable gland support plate</td>
</tr>
<tr>
<td>4</td>
<td>Rotor</td>
<td>38</td>
<td>Snap ring for drive end shaft</td>
<td>256</td>
<td>Preloading spring</td>
</tr>
<tr>
<td>5</td>
<td>Drive end shield</td>
<td>40</td>
<td>Drive end cover fixing screw</td>
<td>270</td>
<td>Drive end shield fixing screw</td>
</tr>
<tr>
<td>6</td>
<td>Non drive end shield</td>
<td>41</td>
<td>Leaktight toothed lock washer for DE bearing retainer</td>
<td>272</td>
<td>DE shield washer</td>
</tr>
<tr>
<td>7</td>
<td>Fan</td>
<td>42</td>
<td>Drive end grease nipples</td>
<td>273</td>
<td>Non drive end shield fixing screw</td>
</tr>
<tr>
<td>10</td>
<td>Turbine or fan screw</td>
<td>50</td>
<td>Non drive end bearing</td>
<td>275</td>
<td>Fixing washer for NDE shield</td>
</tr>
<tr>
<td>11</td>
<td>Lockwasher</td>
<td>53</td>
<td>Inner non drive end bearing retainer</td>
<td>406</td>
<td>Drive end grease valve cover plate</td>
</tr>
<tr>
<td>12</td>
<td>Lock washer</td>
<td>60</td>
<td>Circlip</td>
<td>456</td>
<td>Non drive end grease valve cover plate</td>
</tr>
<tr>
<td>13</td>
<td>Fan cover</td>
<td>62</td>
<td>Cover fixing screw</td>
<td>468</td>
<td>Earth terminal plug</td>
</tr>
<tr>
<td>21</td>
<td>Drive end shield shaft extension key</td>
<td>63</td>
<td>Fixing washer for NDE bearing retainer</td>
<td>629</td>
<td>Draining plug</td>
</tr>
<tr>
<td>25</td>
<td>Lifting ring</td>
<td>64</td>
<td>Non drive end grease nipple</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Nameplate</td>
<td>65</td>
<td>Extension for non drive end grease nipple</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
12 - PLSES MOTORS

12.1 - PLSES 225 MG, 250, 280 SC/SD/MD/MD motors

12.1.1 - Dismantling
- Remove the screws (27), the grease nipple (64) and its extension (65), then take off the cover (13).
- Pull out the fan (7) using a hub remover or 2 diametrically opposed levers, using the shield (6) for support, then remove the fan key.
- Take out the key (21).
- Unscrew the tie rods (14) then remove them.
- Unscrew the DE bearing retainer (33) and (32) fixing screws (40) and NDE bearing retainer (52) and (53) fixing screws (62), and remove them.
- Unscrew the «Hc» screw of the mobile valve (35) then unscrew the valve using a hook key or a conical bronze drift; unscrew the valve by hand and remove it. The valve holds the seal (39) and its support (386) in place.
- Using a bronze drift, remove the shields (5 and 6) by tapping gently on the shield bosses. Recover the preloading washer (59).
- Remove the circlip (60).
- Remove the rotor (3) from the stator (1) at the drive end, taking care not to touch the winding with the inner bearing retainer.
- Take out the bearings (30) and (50) using a bearing remover, while protecting the end of the shaft end with a washer. Take care not to knock the running surfaces of the shaft.
- The bearings are removed either separately or with the bearing retainers; to avoid damaging the bearing retainers, heat the inner bearing retainer to make it easier to dismantle (the bearing should be discarded).

12.1.2 - Reassembly
- See section 6.1 before reassembly.
- Insert the inner bearing retainer (33) at the rotor drive end and the inner bearing retainer (53) at the non drive end.
- Fit the new bearings on the shaft, see section 6.1 on mounting bearings.
- Mount the circlip (60).
- Insert the rotor (3) in the stator (1) taking every precaution not to knock the winding.
- Screw a rod with the same thread diameter as the screws (40) and (62) into one of the tapped holes of the bearing retainers (33) and (53) to maintain the position of the grease nipple when refitting the shields (5 and 6).
- Position the preloading washer (59) with a small amount of grease at the back of the bearing cage of the NDE shield (6), then remount the NDE shield (6) by positioning it on the stator.
- At the non drive end fit the seal (54) and its support (388), insert the bearing retainer (52) and the locking screws (62) for the bearing retainers (52) and (53).
- At the drive end fit the shield (5) taking care to position the bearing retainer (33) correctly.
- Mount the mobile valve (35) by either screwing it or locking it having carefully mounted the seal (39) and its support (386).
- Mount the shield seals with grease: (54) for the non drive end, (39) for the drive end.
- Mount the outer bearing retainer (32) with the bearing retainer locking screws (40), making sure that the grease drain hole is at the bottom.
- Put the tie rods (14) in place, not forgetting the feet of the protective cover (380), tighten the nuts diagonally without locking them so that the feet of the protective cover can be positioned when it is mounted.
- Install the fan key.
- Mount the fan (7) using a drift to bed it in position or by heating the hub of the aluminium fan to approximately 100°C. MAKE SURE it is facing the right way!
- Check that the motor turns freely by hand and that there is no axial play.
- Replace the protective cover (13) and fix it with the screws (27), replace the grease nipple (64) and its extension (65).
- Tighten the rod nuts (14), always diagonally, up to the torque recommended in section 6.1.
- Fill with new grease: the quantity is indicated in the table below.

<table>
<thead>
<tr>
<th>Bearing</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>6314</td>
<td>105</td>
</tr>
<tr>
<td>6315</td>
<td>140</td>
</tr>
<tr>
<td>6317 or NU317</td>
<td>180</td>
</tr>
<tr>
<td>6318 or NU318</td>
<td>220</td>
</tr>
</tbody>
</table>

(Weight valid for POLYREX EM103 grease with immaculately clean grease track + bearing seat + drain holes).
PLSES 225 MG, 250, 280 SC/SD/MC/MD

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Description</th>
<th>Ref.</th>
<th>Description</th>
<th>Ref.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wound stator</td>
<td>32</td>
<td>Outer drive end bearing retainer</td>
<td>65</td>
<td>Extension for grease nipple</td>
</tr>
<tr>
<td>2</td>
<td>Frame</td>
<td>33</td>
<td>Inner drive end bearing retainer</td>
<td>70</td>
<td>Terminal box</td>
</tr>
<tr>
<td>3</td>
<td>Rotor</td>
<td>35</td>
<td>Drive end mobile grease valve</td>
<td>74</td>
<td>Terminal box lid</td>
</tr>
<tr>
<td>5</td>
<td>Drive end shield</td>
<td>39</td>
<td>Drive end seal</td>
<td>84</td>
<td>Terminal block</td>
</tr>
<tr>
<td>6</td>
<td>Non drive end shield</td>
<td>42</td>
<td>Grease nipple</td>
<td>118</td>
<td>Internal deflector</td>
</tr>
<tr>
<td>7</td>
<td>Fan</td>
<td>50</td>
<td>Non drive end bearing</td>
<td>380</td>
<td>Protective cover feet</td>
</tr>
<tr>
<td>13</td>
<td>Fan cover</td>
<td>52</td>
<td>Outer non drive end bearing retainer</td>
<td>386</td>
<td>Drive end seal support</td>
</tr>
<tr>
<td>14</td>
<td>Tie rods</td>
<td>53</td>
<td>Inner non drive end bearing retainer</td>
<td>388</td>
<td>Non drive end seal support</td>
</tr>
<tr>
<td>21</td>
<td>Key</td>
<td>54</td>
<td>Non drive end seal</td>
<td>411</td>
<td>External deflector</td>
</tr>
<tr>
<td>27</td>
<td>Fan cover screw</td>
<td>59</td>
<td>Preloading (wavy) washer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Drive end bearing</td>
<td>64</td>
<td>Grease nipple</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
12.2 - PLSES 280 MG, 315 motors

12.2.1 - Dismantling

- Remove the screws (27), the grease nipple (64) and its extension (65), then take off the cover (13).
- Pull out the fan (7) using a hub remover or 2 diametrically opposed levers, using the shield (6) for support; for an aluminium fan, heat the hub to approximately 100°C before removing it.
- Take out the key (21).
- Unscrew the mounting screws (14) then remove them.
- Unscrew the DE bearing retainer (32) and (33) fixing screws (40) and NDE bearing retainer (52) and (53) fixing screws (62), and remove them.
- Unscrew the «Hc» screws of the mobile valves (35 and 56) then unscrew the valves using a pin spanner; unscrew the valves by hand and remove them. The valves hold the supports (386) and (388) for the seals (39 and 54) in place.
- Using a bronze drift, remove the shields (5 and 6) by tapping gently on the shield bosses.
- Check that the bearing retainer (53) is smaller in diameter than the stator, otherwise remove the bearing (50) as per the following instructions.
- Remove the rotor (3) from the stator (1) at the drive end, taking care not to touch the winding with the inner bearing retainer if there is no internal turbine. Take out the bearings (30) and (50) using a bearing remover, while protecting the end of the shaft end with a washer. Take care not to knock the running surfaces of the shaft.
- The bearings are removed either separately or with the bearing retainers (33 and 53); to avoid damaging the bearing retainers, heat the inner bearing ring (the bearing should be discarded).
- Recover the preloading washer or springs (59) from the bearing retainer (53).

12.2.2 - Reassembly

- See section 6.1 before reassembly.
- Insert the inner bearing retainer (33) at the rotor drive end and the inner bearing retainer (53) at the non drive end, not forgetting to insert the preloading springs (59) with a little grease.
- Fit the new bearings (30 and 50) on the shaft, see section 6.1 on mounting bearings.
- Insert the rotor (3) in the stator (1) taking every precaution not to knock the winding.
- Screw a rod with the same thread diameter as the screws (40) and (62) into one of the tapped holes of the bearing retainers (33) and (53) to maintain the position of the grease nipple when refitting the shields (5 and 6).
- Check that the preloading springs are properly installed.
- Mount the NDE shield (6) by positioning it on the stator.
- Mount the mobile valve (56) by either screwing it or locking it, having carefully installed the seal (54) with its support (388).
- Mount the DE bearing retainer (52) with the bearing retainer locking screws (62), making sure that the grease drain hole is at the bottom.
- Mount the DE shield (5) by positioning it on the stator.
- Mount the mobile valve (35) by either screwing it or locking it, having carefully installed the seal (39) with its support (386).
- Mount the shield seals with grease: (54) for the non drive end, (39) for the drive end.
- Mount the outer bearing retainer (32) with the bearing retainer locking screws (40), making sure that the grease drain hole is at the bottom.
- Put the tie rods (14) and the feet of the protective cover (380) in place, tighten the nuts diagonally without locking them so that the feet of the protective cover can be positioned when it is mounted.
- Install the fan key.
- Mount the fan (7) using a drift to bed it in position or by heating the hub of the aluminium fan to approximately 100°C. MAKE SURE it is facing the right way!
- Check that the motor turns freely by hand and that there is no axial play.
- Replace the protective cover (13) and fix it with the screws (27), replace the grease nipple (64) and its extension (65).
- Fill with new grease; the quantity is indicated in the table below. Turn the shaft by hand during greasing.
- Tighten the nuts (14), always diagonally, up to the torque recommended in section 6.1.
- Replace the key (21).

<table>
<thead>
<tr>
<th>Bearing</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>6316</td>
<td>160</td>
</tr>
<tr>
<td>6320</td>
<td>385</td>
</tr>
<tr>
<td>NU320</td>
<td>385</td>
</tr>
<tr>
<td>6219</td>
<td>215</td>
</tr>
<tr>
<td>6224</td>
<td>244</td>
</tr>
</tbody>
</table>

(Weight valid for POLYREX EM103 grease with immaculately clean grease track + bearing seat + drain holes).
<table>
<thead>
<tr>
<th>Ref.</th>
<th>Description</th>
<th>Ref.</th>
<th>Description</th>
<th>Ref.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wound stator</td>
<td>32</td>
<td>Outer drive end bearing retainer</td>
<td>64</td>
<td>Grease nipple</td>
</tr>
<tr>
<td>2</td>
<td>Frame</td>
<td>33</td>
<td>Inner drive end bearing retainer</td>
<td>65</td>
<td>Extension for grease nipple</td>
</tr>
<tr>
<td>3</td>
<td>Rotor</td>
<td>35</td>
<td>Drive end mobile grease valve</td>
<td>70</td>
<td>Terminal box</td>
</tr>
<tr>
<td>5</td>
<td>Drive end shield</td>
<td>39</td>
<td>Drive end seal</td>
<td>74</td>
<td>Terminal box lid</td>
</tr>
<tr>
<td>6</td>
<td>Non drive end shield</td>
<td>42</td>
<td>Grease nipple</td>
<td>84</td>
<td>Terminal block</td>
</tr>
<tr>
<td>7</td>
<td>Fan</td>
<td>50</td>
<td>Non drive end bearing</td>
<td>118</td>
<td>Internal deflector</td>
</tr>
<tr>
<td>13</td>
<td>Fan cover</td>
<td>52</td>
<td>Outer non drive end bearing retainer</td>
<td>380</td>
<td>Protective cover feet</td>
</tr>
<tr>
<td>14</td>
<td>Tie rods</td>
<td>53</td>
<td>Inner non drive end bearing retainer</td>
<td>386</td>
<td>Drive end seal support</td>
</tr>
<tr>
<td>21</td>
<td>Key</td>
<td>54</td>
<td>Non drive end seal</td>
<td>388</td>
<td>Non drive end seal support</td>
</tr>
<tr>
<td>27</td>
<td>Fan cover screw</td>
<td>56</td>
<td>Non drive end mobile grease valve</td>
<td>390</td>
<td>Non drive end inner bearing retainer strut</td>
</tr>
<tr>
<td>30</td>
<td>Drive end bearing</td>
<td>59</td>
<td>Preloading (wavy) washer</td>
<td>411</td>
<td>External deflector</td>
</tr>
</tbody>
</table>
12.3 - PLSES 315 MGU to VLGU, PLSES 355 motors

12.3.1 - Dismantling the NDE shield
- Remove the fixing screws (27) and then take off the cover (13).
- Remove the shaft extension screw if necessary.
- Take out the fan (7).
- Remove the fixing screws from the inner NDE bearing retainer (53).
- Remove the shaft extension screw if necessary.
- Take out the fan (7).
- Remove the fan key if appropriate.
- Using two levers or a flexible hammer, disengage the NDE shield (6) taking care not to place it aslant. Remove the shield by sliding it along the shaft.
- Put the dismantled components to one side and retrieve the preloading springs (256), which should be replaced in their housing.

12.3.2 - Dismantling the DE shield
- Dismantle the DE shield without removing the rotor (3). To do this:
  - Remove the fixing screws (270) from the DE shield (5).
  - Remove the fixing screws (40) from the DE internal cover (33).
  - Take out the key (21).
  - Using two levers or a flexible hammer, disengage the DE shield (5) taking care not to place it aslant.
  - Remove the shield by sliding it along the shaft.

12.3.3 - Changing the antifriction bearings
- Using an appropriate lifting tool, take out the rotor without knocking the winding.
- Remove the DE (38) and NDE (60) circlips.
- Remove the bearings (30) and (50) with an appropriate tool, protecting the end of the shaft extension. Do not knock the running surfaces of the shaft.
- Change the bearings in accordance with the instructions described in the General information in section 6 (shrinkfitting only).

IMPORTANT: Before undertaking any of these procedures, read the «CHECKS BEFORE REASSEMBLY» section.

12.3.4 - Reassembly
- Mount the DE bearing (30) on the rotor shaft (take care not to forget the inner bearing retainer (33) and the circlip (38)!), and also the NDE bearing (50) if and only if the stator inner Ø allows the inner NDE bearing retainer (53) to pass through, refit the circlip (60), refit the preloading springs in their housing in the inner NDE bearing retainer (53).
- Insert the rotor into the stator taking care not to knock the winding. Install the NDE bearing if this has not already been done.
- Fill the decompression grooves (416) located in the shaftway and the grease inlet pipes with grease.
- Present the shields, grease nipples facing upwards. Begin with the DE shield (5). Fix a dowel pin in one of the inner bearing retainer (33) tapped holes so that the grease inlet pipes fully correspond.
- End with the NDE shield (6). Fix a dowel pin in one of the inner bearing retainer (53) tapped holes so that the grease inlet pipes fully correspond.
- Lift the rotor slightly and fit the shields in place.

From now on, we recommend checking at every step that the rotor turns freely by hand before continuing to the next instruction.
- Replace the shield fixing screws (270) and (273).
- Insert the fixing screws on the inner bearing retainers (33) and (53). Replace the AZ washers to ensure a perfect seal.
- Replace the fan key if appropriate.
- Replace the fan (7).
- Replace the shaft extension screw if necessary.
- Replace the cover (13) and reinsert the fixing screws (27).
- Lubricate the DE and NDE antifriction bearings, turning the shaft by hand.

Amount of grease for ball bearings:
- Frame size 315: DE and NDE = 56 g for 4P and + / 36 g for 2P
- Frame size 355: DE and NDE = 72 g for 4P and + / 35 g for 2P
### PLSES 315 MGU à VLGU, PLSES 355

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Description</th>
<th>Ref.</th>
<th>Description</th>
<th>Ref.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wound stator</td>
<td>30</td>
<td>Drive end bearing</td>
<td>70</td>
<td>Terminal box</td>
</tr>
<tr>
<td>2</td>
<td>Frame</td>
<td>33</td>
<td>Inner drive end bearing retainer</td>
<td>74</td>
<td>Terminal box lid</td>
</tr>
<tr>
<td>3</td>
<td>Rotor</td>
<td>38</td>
<td>Circlip</td>
<td>81</td>
<td>Cable gland support plate</td>
</tr>
<tr>
<td>5</td>
<td>Drive end shield</td>
<td>40</td>
<td>Screw</td>
<td>84</td>
<td>Terminal block</td>
</tr>
<tr>
<td>6</td>
<td>Non drive end shield</td>
<td>42</td>
<td>Grease nipple</td>
<td>256</td>
<td>Preloading spring</td>
</tr>
<tr>
<td>7</td>
<td>Fan</td>
<td>50</td>
<td>Non drive end bearing</td>
<td>270</td>
<td>Drive end shield fixing screw</td>
</tr>
<tr>
<td>13</td>
<td>Fan cover</td>
<td>53</td>
<td>Inner non drive end bearing retainer</td>
<td>273</td>
<td>Non drive end shield fixing screw</td>
</tr>
<tr>
<td>14</td>
<td>Tie rods</td>
<td>60</td>
<td>Circlip</td>
<td>411</td>
<td>External deflector</td>
</tr>
<tr>
<td>21</td>
<td>Key</td>
<td>64</td>
<td>Grease nipple</td>
<td>416</td>
<td>Bearing retainer screw</td>
</tr>
<tr>
<td>27</td>
<td>Fan cover screw</td>
<td>65</td>
<td>Extension for grease nipple</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Installation and maintenance - Three-phase induction motors
4850 en - 2019.06 / g
49